PAR → ATP, NADPH ~34%-os hatékonyság a további lépések (CO2 redukció, szubsztrát regeneráció, transzport, új vegyületek szintézise, légzési folyamatok (iongrádiensek fenntartása, biomassza fenntartási légzése)) során az eredő hatékonyság jelentősen csökken. A vegetációs periódus hosszát is tekintetbe véve → az energiaátalakítás hatékonysága 3% alatti még a trópusi esőerdők esetében is. A növekedés „költsége”: 0.557gC/g száraztömeg→ a növekedési légzés „költsége” 25%-os A CO2-felvétel korlátai (PAR, CO2cc, víz,T) emelkedő légköri CO2-szint, vegetáció válaszai levél-élethossz ↔ fotoszintetikus aktivitás turnover, N-tartalom SLA (támasztószövetek) védekezés (lignin, tannin) Az állományok felső szintjei, → a felületi határréteg vastagsága miatt is (+PAR lim.) a legproduktívabbak. állomány vs levél Pn-PAR telítődése
Produkció= termelés-fogyasztás~fotoszintézis-légzés Légzés, respiráció mitokondriális légzés →oxidatív foszforiláció ~ a glükóz elégetése révén nyer ATP-t a fenntartási, a növekedési légzéshez, továbbá az ionfelvételhez (aktív) →floem transzport, tápanyagok aktív transzporttal való felvétele fenntartási: - lipid- és fehérje-turnoverek (kicserélődés) energiaigénye növekedési: - az egyes vegyületek előállításához szükséges energia ionfelvétel: - grádienssel szemben működő ionpumpák energiaigénye
Egyedi szintű produkció Produktivitás – a produkciós folyamat intenzitása produktum - „ eredménye Allokáció: a növekedés megoszlása a növény részei (hajtás, gyökérzet, virágzat) között Liebig törvénye: a növekedést az egyes elemek különböző mértékben határozzák meg a leginkább korlátozó elem mennyisége határozza meg a maximális növekedési sebességet Egyedi produkciós mutatók – a növény morfológiája, „levelessége” (allokáció) Nettó asszimilációs ráta (NAR) g.m-2nap-1 ----- „egységnyi teljesítmény” Levélfelület-arány (LAR) m2.g-1 „egységnyi munkaerő” Relatív növekedési ráta (RGR) nap-1 RGR= NAR * LAR
A szigmoid növekedési görbe a tömeg (hossz) időbeli alakulását adja meg, a növekedés aktuális sebessége ennek a görbének a (t időpontban vett) meredeksége → abszolút növekedési ráta/sebesség (g.nap-1)
NPP=GPP-Rautotróf, (~0.5*GPP) (degree days, T=summa(Tnapi közép-Tbase) Állományszintű produkciós folyamatok a fény elnyelődése a lombsátorban, levélfelület-index (LAI, leaf area index, m2/m2) I=Ioe-kL I: beeső PAR. Io: a lombsátor alatt mért PAR, k: extinckiós együttható, L: LAI Bruttó primer produkció (GPP, Gross Primary Prodcution) Nettó primer produkció (NPP, Net Primary Production) fitomassza, produkció (gm-2), produktivitás (gm-2év-1) NPP=GPP-Rautotróf, (~0.5*GPP) (degree days, T=summa(Tnapi közép-Tbase) és NPP=dB+L+A (dB: tömeggyarapodás, L: legelés, A: avar) (NEP: nettó ökoszisztéma produkció) NEP=NPP-Rheterotróf- egyéb C-veszteségek (kimosódás, metán emisszió, diszturbancia) (éves időskálák, vegetációs periódus hossza fontos)
A megkötött szervesanyag sorsa a C-tárolás (klímavédelem) szempontjából GPP vs légzési komponensek (tápláléklánc) és zavarás NEP: nettó ökoszisztéma produkció NBP: nettó biom produkció (regionális skála) tér és időskála (levél, növényi állomány, ökoszisztéma
Ökoszisztémák élőlények (biotikus) környezetük (abiotikus, levegő, víz, talaj, sugárzó energia) NPP, GPP, Ra, Rh biomassza, élő és holt fitomassza NPP=GPP-Ra ,NEP=NPP-Rh NBP=NEP-Fzavarás Autotróf légzés herbivorok szaprofiták légzése karnivorok (ragadozók) légzése Fzavarás →zavarásból eredő (C-)veszteségek NPP NEP GPP NEP, nettó ökoszisztéma produkció NBP, nettó biom produkció 100 J 1-10 J
Biomassza piramis terresztris pelagikus reprodukciós ciklus hosszú rövid Energia piramis
C-mérleg Amiért érdekes Az emissziók hozzávetőlegesen 40%-át veszi fel a terresztris vegetáció - Az öreg erdők nagy jelenleg is mennyiségben veszik fel a szenet (vö, a klimax társulás produktivitása koncepció). - Megőrzésük ezért a klímavédelem szempontjából fontos feladat. Az új telepítésű erdők: a telepítést követően legalább 10 év szükséges ahhoz hogy forrásból nyelővé váljanak. A megkötött C 30%-a 30-100 éves kicserélődési idejű szénformákhoz kötve a talajban marad Large sinks credits have been given to specific countries and will be traded.... Kyoto
Mit mérünk? Levél szint µmolCO2.m-2(levél)s-1 Állomány-szint µmolCO2.m-2(földfelszín)s-nap, év NPP=GPP-RA Növényi légzés és heterotróf légzés (RA,RH) Nettó Primer Produkció ,NPP Bruttó Primer Produkció GPP Nettó Ökoszisztéma Gázcsere,→Net Ecosystem Exchange (NEE, „nyelő” és „forrás”) GPP=-NEE+Reco, Reco=RA+RH - NEE=NPP-RH
NDVI=(NIR-VIS)/(NIR+VIS) NDVI: normalised difference vegetation index NIR: közeli infravörös energiája (a zöld levelek reflexiója itt nagy) VIS: látható fény energiája (ebben a tartományban →klorofill, a fény abszorpciója)
Minél nagyobb az NDVI értéke, annál nagyobb az adott terület produktivitása
Nettó primer produkció (g/m2/év) vegetációs periódus hossza évi középhőmérséklet (hőösszeg), csapadékösszeg A vegetációs periódusra integrált NDVI..
Biom típus/NPP, biomassza (Whittaker 1973) Terület 106km2 NPP gm-2év-1 Összes NPP 1015 t.év-1 Átlagos BM.tömeg kg.m-2 Trópusi esőerdő 17 2000 34 44 Trópusi lombhullató erdő 7.5 1500 11.3 36 Mérsékelt övi esőerdő 5 1300 6.4 Mérsékelt övi lombhullató erdő 7 (10.4) 1200 8.4 30 Boreális erdők 12 (13.4) 800 9.5 20 Szavannák 15 700 10.4 4 Mezőgazdasági területek 14 644 9.1 1.1 Cserjés területek (macchia) 8 600 4.9 6.8 Mérsékeltövi gyepek 9 500 4.4 1.6 Tundra 144 0.67 Száraz bozótosok 18 71 1.3 Szikla, jég és homok (sivatagok) 24 3.3 0.09 0.02 Láp és mocsár 2 2500 Tavak és folyók 2.5 Szárazföldi +Édesvízi 149 720 107.09 12.3
A trópusi esőerdők NPP-jéhez fogható a lápok, mocsarak, korallzátonyok és „alga-ágyak” (kontinentális selfek) NPP-je. A trópusi esőerdők a Föld felszínének 4%-át foglalják el, biomasszájuk (és produktivitásuk) viszont ¼-e az összes biomasszának. kicserélődési idők (avarbomlás) néhány (~10) hét (trópusi erdő) – néhány év (mérsékelt övi tűlevelű növényállományok)
A nyílt óceánok területi aránya (71%) az alacsony produktivitás ellenére az esőerdőkéhez hasonló összes NPP-t ad.
GPP Reco NEE
Dekompozíció, a szerves anyag lebomlása (lebontók -- a felvett energia (GPP) legnagyobb része áthalad) NPP Avarképződés és dB L A bomlás (exponenciális) At=A0e-kt At,0: az avar tömege a t-ik és a 0-ik időpillanatban e: a természetes logaritmus alapszáma k: a bomlási ráta (1/év) 1/k: átlagos tartózkodási idő k= éves avarmennyiség/a talajon lévő avarmennyiség k=0.1 → mérsékeltövi fenyvesek..... k=4→trópusi erdő) „Priming” : a bomlás sebessége a rizoszférában gyorsabb, mint az egyéb talajrétegekben oka: a lebontó mikroorganizmusok a gyökerektől „kapott” cukrot közvetlenül használják az egyéb (időseb) szervesanyagok bontásához. bomlási ráta (k) kezdeti lignin:nitrogén (C:N) arány