Fizika 7. Félvezető eszközök Félvezető eszközök.

Slides:



Advertisements
Hasonló előadás
Elektromos ellenállás
Advertisements

GTO-k SZERKEZETE Négyrétegű félvezető
Digitális elektronika
Elektromos ellenállás
SO 2, NO x felbontási hatásfokának vizsgálata korona kisülésben Horváth Miklós – Kiss Endre.
Elektromos alapismeretek
Az elektromos áram. Az áramerősség
Folyadékok vezetése, elektrolízis, galvánelem, Faraday törvényei
Félvezetők Félvezető eszközök.
ÁRAMERŐSSÉG.
A bipoláris tranzisztor és alkalmazásai
A félvezető dióda (2. rész)
Az elektronika félvezető fizikai alapjai
FÉLVEZETŐ-FIZIKAI ÖSSZEFOGLALÓ
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke 1. zárthelyi megoldásai október 18.
Napenergia-hasznosítás
Félvezető technika.
MIKROELEKTRONIKA 3. 1.Felületek, felületi állapotok. 2.Térvezérlés. 3.Kontakt effektusok a félvezetőkben. 4.MES átmenet, eszközök.
MIKROELEKTRONIKA 6. A p-n átmenet kialakítása, típusai és alkalmazásai
Speciális tranzisztorok, FET, Hőmodell
Elektrotechnika-elektronika
Elektronika Alapismeretek II. rész.
Elektrotechnika 14. előadás Dr. Hodossy László 2006.
Soros kapcsolás A soros kapcsolás aktív kétpólusok, pl. generátorok, vagy passzív kétpólusok, pl. ellenállások egymás utáni kapcsolása. Zárt áramkörben.
Ma igazán feltöltőthet! (Elektrosztatika és elektromos áram)
Elektronikai alkatrészek
Feszültség, ellenállás, áramkörök
4. Félvezetőlézerek Lézerközeg: p-szennyezett és n-szennyezett félvezető anyag közötti határréteg Az elektromos vezetés szilárdtestfizikai alapjai szükségesek.
4. Félvezetőlézerek Lézerközeg: p-szennyezett és n-szennyezett félvezető anyag közötti határréteg Az elektromos vezetés szilárdtest-fizikai alapjai szükségesek.
2. Félvezetőlézerek Lézerközeg: p-szennyezett és n-szennyezett félvezető anyag közötti határréteg Az elektromos vezetés szilárdtest-fizikai alapjai szükségesek.
Elektromos alapjelenségek, áramerősség, feszültség
Áramköri alaptörvények
A bipoláris tranzisztor modellezése
 Selyemfonálra függesztünk egy alumíniumfonálból készített üreges hengert.  A henger nincs elektromosan töltve.  Elektromosan töltött rúddal közelítünk.
Mit tudunk már az anyagok elektromos tulajdonságairól
Gáztöltésű detektorok Szcintillátorok Félvezetők
Ellenállás Ohm - törvénye
Elektromos áram.
Fogyasztók az áramkörben
Félvezető áramköri elemek
MIKROELEKTRONIKA, VIEEA306
Bipoláris technológia Mizsei János Hodossy Sándor BME-EET
A bipoláris tranzisztor I.
Villamos tér jelenségei
A bipoláris tranzisztor és alkalmazásai
A félvezetők működése Elmélet
A dielektromos polarizáció
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke 1. zárthelyi megoldásai október 10.
Az elektromos áram.
Elektromos töltés, alapjelenségek
Elektromos áram U Volta = R Ohm I Ampére.
Elektromos áram, egyenáram
Egyenáram KÉSZÍTETTE: SZOMBATI EDIT
Készítette: Gáspár Lilla G. 8. b
Készült a HEFOP P /1.0 projekt keretében Az információtechnika fizikája XII. Előadás Elektron és lyuk transzport Törzsanyag Az Európai.
Elektromos áram, áramkör
Egyenáram KÉSZÍTETTE: SZOMBATI EDIT
Járművillamosság-elektronika
A mértékegységet James Prescott Joule angol fizikus tiszteletére nevezték el. A joule a munka, a hőmennyiség és az energia – mint fizikai mennyiségek.
Mitől függ a vezetékek elektromos ellenállása?
Az ellenállás Ohm törvénye
Komplex természettudomány-fizika
Elektromos alapjelenségek, áramerősség, feszültség (Összefoglalás)
Elektronika Tranzisztor (BJT).
Az elektromos áram.
Nagyteljesítményű LED
Automatikai építőelemek 3.
Félvezető áramköri elemek
Járművillamosság és elektronika II.
Zárthelyi előkészítés
Előadás másolata:

Fizika 7. Félvezető eszközök Félvezető eszközök

A félvezetők Elektromos vezetés szempontjából az anyagokat három csoportra osztjuk: Vezetők: Specifikus ellenállásuk 10-8 – 10-6 Ωm. (1 m hosszú, 1 mm2 keresztmetszetű szál ellenállása 10-2 – 1 Ω. Félvezetők: Specifikus ellenállásuk 10-6 – 1012 Ωm. (1 m hosszú, 1 mm2 keresztmetszetű szál ellenállása 1 – 1018. Szigetelők: Specifikus ellenállásuk a fentinél nagyobb érték. Félvezető eszközök

Tulajdonságaikat szennyező atomok bevitelével módosítják. A félvezetők tipikus képviselői a nagytisztaságú szilícium és germánium. Tulajdonságaikat szennyező atomok bevitelével módosítják. 1. Szennyezés 5 vegyértékű atomokkal (arzén, antimon) n-típusú félvezető Félvezető eszközök

2. Szennyezés 3 vegyértékű atomokkal (alumínium, gallium, indium) p-típusú félvezető Félvezető eszközök

Áramkörben az elektronok a pozitív pólus felé áramlanak. Az n-típusúakban felesleges, nem kötött elektronok találhatók, amelyek gyakorlatilag szabadon mozoghatnak. Áramkörben az elektronok a pozitív pólus felé áramlanak. A p-típusúakban be nem töltött helyek, lyukak találhatók. Ezekbe a szomszédos elektronok könnyen átugorhatnak. A jelenség olyan, mintha a lyuk mozdulna el, azaz mintha pozitív töltés vándorolna. Áramkörben a lyukak a negatív pólus felé áramlanak. Félvezető eszközök

Félvezető eszközök Termisztor A félvezetők ellenállása meredeken csökken a hőmérséklet emelkedésével, ezért nagyon pontos, akár 0,001 ºC pontosságú hőmérsékletmérés megvalósítható a félvezető ellenállásának mérésével. Félvezető eszközök

- + Dióda Érintsünk össze egy p- és egy n-típusú félvezetőt! Elektronok lépnek át az n-típusúról a p-típusúra, az elektronok és a lyukak egy széles sávban rekombinálódnak. Töltésben szegény záróréteg alakul ki, az elektronvándorlás megáll. Potenciálkülönbség keletkezik, az n-típusú félvezető pozitív töltésű lesz. Félvezető eszközök

Kapcsoljunk külső feszültséget a diódára! Ha az n-típusú oldalra kapcsoljuk a pozitív pólust, akkor a záróréteg szélesedik, a töltések átlépését a széles záróréteg méginkább gátolja, a dióda gyakorlatilag nem vezet. Ez a záróirányú kapcsolás. (Minimális, a feszültség nagyságától független visszáram folyik a körben.) Félvezető eszközök

Ez a nyitóirányú kapcsolás. Ha az n-típusú oldalra a negatív pólust kapcsoljuk, akkor a záróréteg elkeskenyedik, a töltések könnyedén átlépnek a határrétegen, áram folyik a körben, a dióda vezet. Ez a nyitóirányú kapcsolás. (Az áramerősség a feszültség növelésével rohamosan nő, mivel a határréteg egyre vékonyabb, ellenállása így egyre kisebb lesz.) A diódát elsősorban egyenirányításra használjuk. Félvezető eszközök

Vékony p és vastag n-réteggel diódát készítünk: Fotodióda Vékony p és vastag n-réteggel diódát készítünk: I = 0 A diódát kis zárófeszültséggel előfeszítjük, áram gyakorlatilag nem folyik. Félvezető eszközök

Ha a p-réteget fény éri, elektronokat tesz szabaddá: Az elektronok a pozitív pólus felé áramlanak. A keletkező áram erősségének mérésével a fényintenzitást követhetjük. Félvezető eszközök

Fényelem Az előbbi elvek alapján készített diódát előfeszítés nélkül alkalmazzuk. h e- I > 0 Ha fény éri a p-réteget, akkor a szabaddá váló elektronok révén áram folyik a körben. Terhelést bekötve az áram energiája hasznosítható. Félvezető eszközök

Fényelem Hasonló felépítésű, de speciális anyagú diódára nyitó irányú feszültséget kapcsolunk. h I > 0 Az elektronok belépnek a p-rétegbe, ott a lyukakkal rekombinálódnak. A rekombináció során energia szabadul fel, az energia egy része fény formájában lép ki. Félvezető eszközök

A tranzisztor három félvezető rétegből épül fel. Nevük (az ábrán balról jobbra): emitter (e) bázis (b) kollektor (c) Az ábrázolt tranzisztor p-n-p típusú, mert emittere és kollektora p-, míg bázisa n-típusú félvezető réteg. Félvezető eszközök

Az ábrán a tranzisztor erősítő üzemmódban működik. - Az emitter-bázis határréteg nyitó irányban előfeszített, az emitterből lyukak lépnek a bázisba (Ie). - A bázis vékony, emiatt a lyukaknak csak egy kis része rekombinálódik, másik része adja a bázisáramot (Ib). Legnagyobb részük átsodródik a záró irányban előfeszített bázis-kollektor határrétegen, ez adja a kollektoráramot (Ic). - A kollektoráram erőssége nagyban függ az emitterkör feszültségétől, tehát utóbbival szabályozni tudjuk az előbbit. Félvezető eszközök

Ha az emitterkör polaritását változtatjuk, akkor a tranzisztort kapcsoló módban működtetjük, mivel a kollektoráramot ki-be kapcsolhatjuk. Az ábrázolt típuson kívül még sokféle tranzisztortípus létezik, működésük logikája és felhasználásuk a leírthoz hasonló. Félvezető eszközök

A félvezető eszközök felhasználásának előnyei - Méretük kicsi. - Energiafogyasztásuk csekély. - Nem igényelnek bemelegedési időt. - Meghibásodásuk esélye kicsi. - Nagy tömegben olcsón előállíthatók. Félvezető eszközök