1 Györgyi Tamás – GYTNAAI.ELTE 2007 Április 03 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus Bellman-Ford Algoritmusa S a b d e 6 -2 8 7 -4 2 7 -3 5.

Slides:



Advertisements
Hasonló előadás
A Floyd-Warshall algoritmus
Advertisements

A Dijkstra algoritmus.
OKTV feladatok megoldása C#-ban
Készítette: Major Máté
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G irányított vagy irányítás nélküli, véges gráf. Az eljárás célja a G gráf összes csúcsának bejárása.
Erősen összefüggő komponensek meghatározása
DAG topologikus rendezése
Készítette: Hanics Anikó. Az algoritmus ADT szintű leírása: A d[1..n] és P[1..n] tömböket, a korábban ismertetett módon, a távolság és a megelőző csúcs.
Dijkstra algoritmus Irányított gráfban.
Szélességi bejárás Párhuzamosítása.
Dijkstra algoritmus Baranyás Bence. Feladat Adott egy G=(V,E) élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges.
Gráf Szélességi bejárás
Készítette Schlezák Márton
Gráfok szélességi bejárása Algoritmus bemutatása egy gráfon példa.
Ág és korlát algoritmus
Gráf szélességi bejárása. Alapfogalmak G = (V,E)irányított, véges, nem üres gráf d (s,u)két csúcs távolsága lút hossza, élek száma Qsor adatszerkezet.
1. Univerzális nyelő Csúcsmátrixos ábrázolás esetén a legtöbb gráfalgoritmus futási ideje O(n2) azonban van kivétel. Egy irányított gráf egy csúcsa univerzális.
Prím algoritmus.
„Országos” feladat. Feladat: Egy tetszőleges, színes országokat tartalmazó térképen akar eljutni egy kommandós csapat egy országból egy másikba. Viszont.
Dijkstra algoritmus Algoritmusok és adatszerkezetek 2. Újvári Zsuzsanna.
Dijkstra algoritmusa Egy csúcsból a többibe vezető legkisebb költségű út megkeresése Az algoritmus működésének leírása és bemutatása LL.
Szélességi bejárás A szélességi bejárással egy irányított vagy irányítás nélküli véges gráfot járhatunk be a kezdőcsúcstól való távolságuk növekvő sorrendjében.
Készítette: Kosztyán Zsolt Tibor
Dijkstra algoritmus. Az algoritmus elve Kezdésnél a start csúcson kívül minden csúcs távolsága legyen ∞. (A start csúcs távolsága 0) Feltételes minimum.
Készítette: Lakos Péter.  Adott egy élsúlyozott, véges gráf  Negatív élsúlyokat nem tartalmaz  Lehet irányított vagy irányítatlan  Továbbá adott egy.
Készítette: Lakos Péter.  Adott egy irányított vagy irányítatlan, véges gráf.  Írjuk ki a csúcsokat egy kezdőcsúcstól való távolságuk növekvő sorrendjében.
Dijkstra-algoritmus ismertetése
Algoritmusok II. Gyakorlat 2. Feladat Pup Márton.
Algoritmusok II. Gyakorlat 3. Feladat Pup Márton.
Gráf Szélességi bejárás/keresés algoritmusa
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G=(V,E) élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges gráf.
A Dijkstra algoritmus.
Gráf szélességi bejárása SzB(G,p). Tetszőleges gráf, melyben a p csúcsot választottam kiindulónak: A gráfnak megfelelő fa:
Feladat: Adott egy város, benne metrók és állomások. Írjunk algoritmust amely megszámolja hogy mennyi az a legkevesebb átszállás amellyel egy tetszőleges.
Nevezetes algoritmusok: Fa megvalósítása Készítette: Várkonyi Tibor Zoltán.
Dijkstra algoritmusa Gubicza József (GUJQAAI.ELTE)
Prim algoritmusa Gubicza József (GUJQAAI.ELTE). Jellemzők Cél: Adott egyszerű gráfban a min. költségű feszítőfa meghatározása. Algoritmikus szinten: 3.
Előadó: Nagy Sára Mesterséges intelligencia Kereső rendszerek.
1 Szélességi Bejárás Györgyi Tamás – GYTNAAI.ELTE 2007 Március 22 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S b a d e f h g c.
1 Dijkstra Algoritmusa Györgyi Tamás – GYTNAAI.ELTE 2007 Április 02 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S a b c d e
Az ábrán az inicializáló blokk lefutása utáni állapotot láthatjuk. A KÉSZ halmazhoz való tartozást színezéssel valósítjuk meg. A nem KÉSZ csúcsok fehérek,
DAG topologikus rendezése
Kruskal-algoritmus.
Készítette Schlezák Márton
Algoritmus és adatszerkezet Tavaszi félév Tóth Norbert1 Floyd-Warshall-algoritmus Legrövidebb utak keresése.
Bellmann-Ford Algoritmus
Horváth Bettina VZSRA6.  Célja: Az eljárás célja egy véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő sorrendben.
Útkeresések.
Diszjunkt halmazok adatszerkezete A diszjunkt halmaz adatszerkezet diszjunkt dinamikus halmazok S={S 1,…,S n } halmaza. Egy halmazt egy képviselője azonosít.
Morvai Mária-Júlia F3D3D4.  Adott egy G=(V,E)élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó,véges gráf. Továbbá adott.
Gráf szélességi bejárása. Cél Az algoritmus célja az, hogy bejárjuk egy véges gráf összes csúcsát és kiírjuk őket a kezdőcsúcstól való távolságuk szerint.
DIJKSTRA- ALGORITMUS. A Dijkstra-algoritmus egy mohó algoritmus, amivel irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges gráfokban.
Gráfalgoritmusok Szélességi bejárás.
Szélességi bejárás Gráf-algoritmusok Algoritmusok és adatszerkezetek II. Gergály Gábor WZBNCH1.
Készítette : Giligor Dávid Neptun : HSYGGS
Prim algoritmus Algoritmusok és adatszerkezetek 2. Újvári Zsuzsanna.
Szélességi bejárás. Véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő sorrendben Egy csúcsot egyszer járunk be Egyenlő.
Dijkstra algoritmus. Egy minimális költségű utat keres élsúlyozott gráfban A gráf lehet irányított vagy irányítás nélküli Feltétele, hogy pozitív élsúlyok.
Dijkstra algoritmus. Az algoritmus működése  Kezdésnél a kezdő csúcson kívül minden csúcs távolsága legyen ∞, a kezdő csúcs távolsága 0.  Feltételes.
Gráf Szélességi bejárás Készítette: Giligor Dávid Neptun : HSYGGS.
Dijkstra algoritmus Gráf-algoritmusok Algoritmusok és adatszerkezetek II. Gergály Gábor WZBNCH1.
Eötvös Konferencia, 2008 április 26. Kovács Máté 1 Útkeresések optimalizálása számítógépes játékokban.
Algoritmus DAG = irányított körmentes gráf. Először ezt a tulajdonságot ellenőrizzük (mélységi bejárással), aztán rendezzük: Q: Sor adatszerkezet, kezdetben.
Huffman algoritmus Gráf-algoritmusok Algoritmusok és adatszerkezetek II. Gergály Gábor WZBNCH1.
A Dijkstra algoritmus.
Gráfok szélességi bejárása Dijkstra algoritmus
Dinamikus adatszerkezetek
INFOÉRA Gráfok, gráfalgoritmusok II. (Horváth Gyula és Szlávi Péter előadásai felhasználásával) IDE KELL: prioritási sor kupaccal. Juhász.
Gráfalgoritmusok G=(V,E) gráf ábrázolása
Gráfalgoritmusok G=(V,E) gráf ábrázolása
Előadás másolata:

1 Györgyi Tamás – GYTNAAI.ELTE 2007 Április 03 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus Bellman-Ford Algoritmusa S a b d e

2 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus A Bellman-Ford algoritmus az i-edik iterációban minden csúcshoz (kivéve kezdő csúcsot), megtalálja a minimális költségű, legfeljebb i hosszúságú utat. Negatív élköltségek is lehetségesek a gráfban. Feltétel hogy a gráf nem tartalmazhat negatív kört! A gráf éleit (n-1) szer tetszőleges sorrendbe kell bejárni.

3 Bellman-Ford (G, s) d[u]:=∞; π[u]:=Nil; Üres(KÉSZ); Üres(minQ); Feltölt(minQ) for all (u,v) Є E for all u Є V \ {s} Algoritmusok És Adatszerkezetek 2 d[s]:=0; π[s]:=Nil; for i=1 to n-1 d[u]+c(u,v) < d[v] d[v]:=d[u]+c(u,v); π[v]:=u; skip

4 A Bellman-Ford Algoritmusa működésének szemléltetése egy gráfon: Algoritmusok És Adatszerkezetek 2 S a b c d e Így néz ki az irányított gráfom: 9 S – Start csúcs

5 A Bellman-Ford Algoritmusa működésének szemléltetése egy gráfon: Algoritmusok És Adatszerkezetek 2 0 S ∞ ∞ ∞ ∞ a b c d e lépés 9

6 A Bellman-Ford Algoritmusa működésének szemléltetése egy gráfon: Algoritmusok És Adatszerkezetek 2 0 S 6 7 ∞ ∞ a b c d e lépés 9

7 A Bellman-Ford Algoritmusa működésének szemléltetése egy gráfon: Algoritmusok És Adatszerkezetek 2 0 S a b c d e lépés 9

8 A Bellman-Ford Algoritmusa működésének szemléltetése egy gráfon: Algoritmusok És Adatszerkezetek 2 0 S a b c d e lépés 9

9 A Bellman-Ford Algoritmusa működésének szemléltetése egy gráfon: Algoritmusok És Adatszerkezetek 2 0 S a b c d e lépés 9

10 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus Vége Györgyi Tamás – GYTNAAI.ELTE 2007 Április 03 Bellman-Ford Algoritmusa