Prím algoritmus.

Slides:



Advertisements
Hasonló előadás
A Floyd-Warshall algoritmus
Advertisements

A Dijkstra algoritmus.
Készítette: Kosztyán Zsolt Tibor
Készítette: Major Máté
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G irányított vagy irányítás nélküli, véges gráf. Az eljárás célja a G gráf összes csúcsának bejárása.
Matematika II. 2. előadás Geodézia szakmérnöki szak 2012/2013. tanév Műszaki térinformatika ágazat őszi félév.
Illés Tibor – Hálózati folyamok
DAG topologikus rendezése
Készítette: Hanics Anikó. Az algoritmus ADT szintű leírása: A d[1..n] és P[1..n] tömböket, a korábban ismertetett módon, a távolság és a megelőző csúcs.
Dijkstra algoritmus Irányított gráfban.
Szélességi bejárás Párhuzamosítása.
Dijkstra algoritmus Baranyás Bence. Feladat Adott egy G=(V,E) élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges.
Gráfok szélességi bejárása
Gráf Szélességi bejárás
Készítette Schlezák Márton
Gráfok szélességi bejárása Algoritmus bemutatása egy gráfon példa.
Minimax és problémaredukció, egyszerű példák INCK431 Előadó: Dr. Nagy Benedek Norbert Gyakorlatvezető: Kovács Zita 2011/2012. II. félév A MESTERSÉGES INTELLIGENCIA.
Papp Róbert, Blaskovics Viktor, Hantos Norbert
Miskolci Egyetem Informatikai Intézet Általános Informatikai Tanszé k Pance Miklós Adatstruktúrák, algoritmusok előadásvázlat Miskolc, 2004 Technikai közreműködő:
Dijkstra algoritmus. Kiválasszuk a legkisebb csúcsot, ez lesz a kezdőcsúcs, amit 0-val címkézünk és megjelöljük sárgaszínnel. Szomszédjai átcímkézése.
1 Györgyi Tamás – GYTNAAI.ELTE 2007 Április 03 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus Bellman-Ford Algoritmusa S a b d e
„Országos” feladat. Feladat: Egy tetszőleges, színes országokat tartalmazó térképen akar eljutni egy kommandós csapat egy országból egy másikba. Viszont.
Dijkstra algoritmus Algoritmusok és adatszerkezetek 2. Újvári Zsuzsanna.
Dijkstra algoritmusa Egy csúcsból a többibe vezető legkisebb költségű út megkeresése Az algoritmus működésének leírása és bemutatása LL.
Szélességi bejárás A szélességi bejárással egy irányított vagy irányítás nélküli véges gráfot járhatunk be a kezdőcsúcstól való távolságuk növekvő sorrendjében.
Készítette: Kosztyán Zsolt Tibor
Dijkstra algoritmus. Az algoritmus elve Kezdésnél a start csúcson kívül minden csúcs távolsága legyen ∞. (A start csúcs távolsága 0) Feltételes minimum.
Készítette: Lakos Péter.  Adott egy élsúlyozott, véges gráf  Negatív élsúlyokat nem tartalmaz  Lehet irányított vagy irányítatlan  Továbbá adott egy.
Készítette: Lakos Péter.  Adott egy irányított vagy irányítatlan, véges gráf.  Írjuk ki a csúcsokat egy kezdőcsúcstól való távolságuk növekvő sorrendjében.
Dijkstra-algoritmus ismertetése
Algoritmusok II. Gyakorlat 2. Feladat Pup Márton.
Algoritmusok II. Gyakorlat 3. Feladat Pup Márton.
Gráf Szélességi bejárás/keresés algoritmusa
A Dijkstra algoritmus.
Gráf szélességi bejárása SzB(G,p). Tetszőleges gráf, melyben a p csúcsot választottam kiindulónak: A gráfnak megfelelő fa:
Készítette: Hanics Anikó. Az algoritmus elve: Kezdetben legyen n db kék fa, azaz a gráf minden csúcsa egy-egy (egy pontból álló) kék fa, és legyen minden.
Nevezetes algoritmusok: Fa megvalósítása Készítette: Várkonyi Tibor Zoltán.
Dijkstra algoritmusa Gubicza József (GUJQAAI.ELTE)
Prim algoritmusa Gubicza József (GUJQAAI.ELTE). Jellemzők Cél: Adott egyszerű gráfban a min. költségű feszítőfa meghatározása. Algoritmikus szinten: 3.
Előadó: Nagy Sára Mesterséges intelligencia Kereső rendszerek.
1 Szélességi Bejárás Györgyi Tamás – GYTNAAI.ELTE 2007 Március 22 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S b a d e f h g c.
1 Dijkstra Algoritmusa Györgyi Tamás – GYTNAAI.ELTE 2007 Április 02 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S a b c d e
Az ábrán az inicializáló blokk lefutása utáni állapotot láthatjuk. A KÉSZ halmazhoz való tartozást színezéssel valósítjuk meg. A nem KÉSZ csúcsok fehérek,
Mélységi bejárás Az algoritmus elve: Egy kezdőpontból kiindulva addig megyünk egy él mentén, ameddig el nem jutunk egy olyan csúcsba, amelyből már nem.
Algoritmizálás, adatmodellezés tanítása 8. előadás.
Kruskal-algoritmus.
Készítette Schlezák Márton
Szélességi bejárás. Kezdőcsúcs felvétele Innen haladunk egy szinttel lejebb, itt felvesszük az összes olyan csúcsot, amit elérünk Ha elfogytak, akkor.
Az informatika logikai alapjai
Business Mathematics A legrövidebb út.
Algoritmus és adatszerkezet Tavaszi félév Tóth Norbert1 Floyd-Warshall-algoritmus Legrövidebb utak keresése.
Bellmann-Ford Algoritmus
Útkeresések.
SZÉLESSÉGI BEJÁRÁS Pap Imre DVX468. A bejárás Meglátogatjuk az első csúcsot, majd ennek a csúcsnak az összes szomszédját. Aztán ezen szomszédok összes.
Diszjunkt halmazok adatszerkezete A diszjunkt halmaz adatszerkezet diszjunkt dinamikus halmazok S={S 1,…,S n } halmaza. Egy halmazt egy képviselője azonosít.
Morvai Mária-Júlia F3D3D4.  Adott egy G=(V,E)élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó,véges gráf. Továbbá adott.
Gráf szélességi bejárása. Cél Az algoritmus célja az, hogy bejárjuk egy véges gráf összes csúcsát és kiírjuk őket a kezdőcsúcstól való távolságuk szerint.
DIJKSTRA- ALGORITMUS. A Dijkstra-algoritmus egy mohó algoritmus, amivel irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges gráfokban.
Szélességi bejárás Gráf-algoritmusok Algoritmusok és adatszerkezetek II. Gergály Gábor WZBNCH1.
Prim algoritmus Algoritmusok és adatszerkezetek 2. Újvári Zsuzsanna.
Szélességi bejárás. Véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő sorrendben Egy csúcsot egyszer járunk be Egyenlő.
Dijkstra algoritmus. Egy minimális költségű utat keres élsúlyozott gráfban A gráf lehet irányított vagy irányítás nélküli Feltétele, hogy pozitív élsúlyok.
Dijkstra algoritmus. Az algoritmus működése  Kezdésnél a kezdő csúcson kívül minden csúcs távolsága legyen ∞, a kezdő csúcs távolsága 0.  Feltételes.
Gráf Szélességi bejárás Készítette: Giligor Dávid Neptun : HSYGGS.
A Huffman féle tömörítő algoritmus Huffman Kód. Az Algoritmus Alapelvei Karakterek hossza különböző A karakter hossza sűrűsége határozza meg: Minél több.
Szélességi bejárás Pátyerkó Dorina (VTYX9O). Szélességi bejárás algoritmusa Kijelölünk egy kezdőcsúcsot. A csúcs szomszédjait megkeressük, majd betesszük.
A Dijkstra algoritmus.
Gráfok szélességi bejárása Dijkstra algoritmus
Dijkstra algoritmusa: legrövidebb utak
Algoritmusok és Adatszerkezetek I.
Előadás másolata:

Prím algoritmus

Az algoritmus elve Minden lépésben a kék szabályt alkalmazza egy s start csúcsból kiindulva. Az algoritmus működése során egyetlen kék fát tartunk nyilván, míg a végén minimális költségű feszítőfa nem lesz. Kezdetben a kék fa egyetlen csúcsból áll, a kezdőcsúcsból, majd minden lépés során, a kék fát tekintve a kék szabályban szereplő X halmaznak, megkeressük az egyik legkisebb súlyú élt (mohó stratégia), amelynek egyik vége eleme a kék fának (X-ben van), a másik vége viszont nem (nem eleme X-nek). Az említett élt hozzá vesszük a kék fához, azaz az élt kékre színezzük, és az él X-en kívüli csúcsát hozzávesszük az X-hez.

Példa 8 4 7 10 4 3 7 9 8 1 1 6 s 8 3 6 9 2 4 4 4 5 2 4

1.lépésben 8 4 7 10 4 3 7 9 8 1 1 6 s 8 3 6 9 2 4 4 4 5 2 4

2.lépésben 8 4 7 10 4 3 7 9 8 1 1 6 s 8 3 6 9 2 4 4 4 5 2 4

3.lépésben 8 4 7 10 4 3 7 9 8 1 1 6 s 8 3 6 9 2 4 4 4 5 2 4

4.lépésben 8 4 7 10 4 3 7 9 8 1 1 6 s 8 3 6 9 2 4 4 4 5 2 4

5.lépésben 8 4 7 10 4 3 7 9 8 1 1 6 s 8 3 6 9 2 4 4 4 5 2 4

6.lépésben 8 4 7 10 4 3 7 9 8 1 1 6 s 8 3 6 9 2 4 4 4 5 2 4

7.lépésben 8 4 7 10 4 3 7 9 8 1 1 6 s 8 3 6 9 2 4 4 4 5 2 4

8.Lépésben (már nem csinálunk semmit) 4 7 10 4 3 7 9 8 1 1 6 s 8 3 6 9 2 4 4 4 5 2 4 A feszítőfa költsége: 1+2+3+4+4+6+7=27

for all u є v d=[u]=∞,π[u]=NIL d[s]=l; üres (min Q), felépít (min Q) ¬üres-e (min Q) u=Kivesz Min(min Q) for all v є szomszéd(u) v є min Q és c(u,v)<d[v] d[v]=c(u,v) π[v]=u Skip helyreállít (minQ)