Lineáris korreláció és lineáris regresszió. A probléma felvetése y = 1,138x + 80,778r = 0,8962.

Slides:



Advertisements
Hasonló előadás
Egyismeretlenes lineáris egyenletek
Advertisements

Kvantitatív Módszerek
Kvantitatív módszerek
Gazdasági informatika
Regresszió számítás Mérnöki létesítmények ellenőrzése, terveknek megfelelése Geodéziai mérések – pontok helyzete, pontszerű információ Lineáris regresszió.
Statisztika feladatok Informatikai Tudományok Doktori Iskola.
Földrajzi összefüggések elemzése
Csoportosítás megadása: Δx – csoport szélesség
Lineáris és nemlineáris regressziók, logisztikus regresszió
Főkomponensanalízis Többváltozós elemzések esetében gyakran jelent problémát a vizsgált változók korreláltsága. A főkomponenselemzés segítségével a változók.
Összefüggés vizsgálatok
Becsléselméleti ismétlés
Összefüggés vizsgálatok x átlag y átlag Y’ = a + bx.
Gazdaságelemzési és Statisztikai Tanszék
Statisztika II. VI. Dr. Szalka Éva, Ph.D..
Regresszió és korreláció
Dr. Szalka Éva, Ph.D.1 Statisztika II. IX.. Dr. Szalka Éva, Ph.D.2 Idősorok elemzése.
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Másodfokú egyenletek.
Ozsváth Károly TF Kommunikációs-Informatikai és Oktatástechnológiai Tanszék.
III. előadás.
PTE PMMK Matematika Tanszék dr. Klincsik Mihály Valószínűségszámítás és statisztika előadások Gépész-Villamosmérnök szak BSc MANB030, MALB030 Bevezető.
Regresszióanalízis 10. gyakorlat.
SPSS többváltozós (lineáris) regresszió (4. fejezet)
Többszörös regresszió I. Többszörös lineáris regresszió
Többszörös regresszió I. Többszörös lineáris regresszió miért elengedhetetlen a többszörös regressziós számítás? a többszörös regressziós számítások fajtái.
Dr. Szalka Éva, Ph.D.1 Statisztika II. VI.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
A kvantummechanika alapegyenlete, a Schrödinger-féle egyenlet és a hullámfüggvény Born-féle értelmezése Előzmények Az általános hullámegyenlet Megoldás.
Kvantitatív módszerek
Budapesti Műszaki és Gazdaságtudományi Egyetem
Az Alakfelismerés és gépi tanulás ELEMEI
STATISZTIKA II. 7. Előadás
Kétismeretlenes elsőfokú (lineáris) egyenletrendszerek
Kvantitatív Módszerek
Idősor elemzés Idősor : időben ekvidisztáns elemekből álló sorozat
Gazdaságstatisztika Korreláció- és regresszióelemzés 20. előadás.
Többváltozós adatelemzés
Többváltozós adatelemzés
Többváltozós adatelemzés
Következtető statisztika 9.
A sztochasztikus kapcsolatok (Folyt). Korreláció, regresszió
Alapsokaság (populáció)
Lineáris regresszió.
Két kvantitatív változó kapcsolatának vizsgálata
Adatelemzés számítógéppel
TÁRSADALOMSTATISZTIKA Sztochasztikus kapcsolatok II.
Valószínűségszámítás - Statisztika. P Két kockával dobunk, összeadjuk az értékeket Mindegyik.
A kombinációs táblák (sztochasztikus kapcsolatok) elemzése
Petrovics Petra Doktorandusz
Bevezetés a Korreláció & Regressziószámításba
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Regresszió-számítás március 30. Dr. Varga Beatrix egyetemi.
Többdimenziós valószínűségi eloszlások
Korreláció-számítás.
Bevezetés a méréskiértékelésbe (BMETE80ME19) 2014/
Adalékok egy véges összegzési feladathoz
Gazdaságstatisztika Gazdaságstatisztika Korreláció- és regressziószámítás II.
Pedagógiai hozzáadott érték „Őrült beszéd, de van benne rendszer” Nahalka István
Korreláció, regresszió
Lineáris regressziós modellek

Gazdaságstatisztika Konzultáció a korreláció- és regressziószámítás, idősorok elemzése témakörökből.
III. zárthelyi dolgozat konzultáció
III. előadás.
Dr. Varga Beatrix egyetemi docens
Valószínűségi változók együttes eloszlása
5. Kalibráció, függvényillesztés
2. Regresszióanalízis Korreláció analízis: milyen irányú, milyen erős összefüggés van két változó között. Regresszióanalízis: kvantitatív kapcsolat meghatározása.
Dr. Varga Beatrix egyetemi docens
3. Varianciaanalízis (ANOVA)
Előadás másolata:

Lineáris korreláció és lineáris regresszió

A probléma felvetése y = 1,138x + 80,778r = 0,8962

A korrelációs együttható L egyenek adottak egy  valószínűségi változóra mért értékek, és másik  valószínűségi változóra mért értékei. Az érték párok összetartozását az azonos index jelzi. A korrelációs együttható megadja, hogy a két változó között feltételezhető-e lineáris összefüggés? Bizonyítás nélkül a korrelációs együttható: ( r ) Minél közelebb van  r  az 1-hez, annál szorosabb a két változó között feltételezett lineáris korreláció. Minél közelebb van  r  a 0-hoz, annál lazább a két változó között feltételezett lineáris kapcsolat.

A regressziós egyenes egyenlete Keressük az ponthalmazt a (legkisebb négyzetek elve szerint) legjobban közelítő egyenes egyenletét, azaz azt az y = ax + b egyenletet, melyre a mért és az egyenlettel becsült értékek eltéréseinek a négyzetösszegeminimális. Keressük tehát az kétváltozós függvény lokális minimumát. Erre kapjuk: és

A regressziós egyenes egyenlete Így a regressziós egyenes egyenlete, a megfelelő átalakítások elvégzése után: Példa:Egy földgázmező földgázvagyonának kitermeléséről az os években a következő adatok állnak rendelkezésre: a./ Igazolja, hogy lineáris összefüggés van a kitermelt mennyiség és az év között? b./A regressziós becslés alapján mennyi fogy el 1992, 93, 94, 95, 96, 97-ben? c./Ha a kitermelés üteme a jelenlegi marad, várhatóan mikor fogy el a 6000 millió -re becsült földgázvagyon?