Pontrendszerek mechanikája

Slides:



Advertisements
Hasonló előadás
Mozgások I Newton - törvényei
Advertisements

Munka és energia.
Az anyagi pont dinamikája A merev testek mechanikája
Környezeti és Műszaki Áramlástan I. (Transzportfolyamatok I.)
A PONTSZERŰ ÉS KITERJEDT TESTEK MOZGÁSA
Dr. Angyal István Hidrodinamika Rendszerek T.
A korlátozott síkbeli háromtestprobléma
Klasszikus mechanikai kéttestprobléma és merev test szabad mozgása állandó pozitív görbületű sokaságon Kómár Péter témavezető: Dr. Vattay Gábor
Mozgások Emlékeztető Ha a mozgás egyenes vonalú egyenletes, akkor a  F = 0 v = állandó a = 0 A mozgó test megtartja mozgásállapotát,
2. Előadás Az anyagi pont dinamikája
Merev testek mechanikája
HIDRAULIKA Hidrosztatika.
Mérnöki Fizika II. 3. előadás
Mérnöki Fizika II előadás
Mérnöki Fizika II előadás
1.feladat. Egy nyugalomban lévő m=3 kg tömegű, r=20 cm sugarú gömböt a súlypontjában (középpontjában) I=0,1 kgm/s impulzus éri t=0,1 ms idő alatt. Az.
1. Feladat Két gyerek ül egy 4,5m hosszú súlytalan mérleghinta két végén. Határozzuk meg azt az alátámasztási pontot, mely a hinta egyensúlyát biztosítja,
AZ ERŐ HATÁSÁRA AZ ERŐ HATÁSÁRA
A PONTSZERŰ ÉS KITERJED TESTEK MOZGÁSA
A PONTSZERŰ ÉS KITERJEDT TESTEK MOZGÁSA
Dinamika.
Forgási állapotok kvantummechanikai leírása 1. Forgás két dimenzióban 2. Forgómozgás három dimenzióban; térbeli forgás - Míért fontos ez a témakör? - Miért.
Szimmetriaelemek és szimmetriaműveletek (ismétlés)
Összefoglalás Dinamika.
2. Koordináta-rendszerek és transzformációk
Légköri dinamika A légkörre ható erők - A centrifugális erő
I. Törvények.
6. A MOLEKULÁK FORGÓMOZGÁSA
Paradoxon perdületre TÉTEL: Zárt rendszer perdülete állandó. A Fizikai Szemle júliusi számában jelent meg Radnai Gyula és Tichy Géza hasonló című.
A Galilei-transzformáció és a Galileiféle relativitási elv
Kerttechnikai és műszaki tanszék Előadó: dr. Tegze Judit Elérhetőség:
Megoszló terhek. Súlypont. Statikai nyomaték
Mechanika KINEMATIKA: Mozgások leírása DINAMIKA: a mozgás oka erőhatás
Mechanika KINEMATIKA: Mozgások leírása DINAMIKA: a mozgás oka erőhatás
5. előadás A merev testek mechanikája – III.
Pozsgay Balázs IV. évfolyamos fizikus hallgató
3.3 Forgatónyomaték.
Alakja, mozgásai, bizonyítékai
Kör és forgó mozgás.
2. hét: Síkbeli erőrendszerek eredője Készítette: Pomezanski Vanda
A perdület megjelenése mindennapjainkban
A Coriolis-erő a fizikában az inerciarendszerhez képest forgó (tehát egyben gyorsuló) vonatkoztatási rendszerben mozgó testre ható egyik tehetetlenségi.
A tehetetlenségi nyomaték
Munka.
A forgómozgás és a haladó mozgás dinamikája
Készítette: Kiss István
Merev test egyensúlyának vizsgálata
Pontszerű test – kiterjedt test
2. előadás.
Készült a HEFOP P /1.0 projekt keretében
A MECHANIKA MEGMARADÁSI TÖRVÉNYEI
AZ ERŐ HATÁSÁRA AZ ERŐ HATÁSÁRA
Ütközések Ugyanazt a két testet többször ütköztetve megfigyelhető, hogy a következő összefüggés mindig teljesül: Például a 2-szer akkora tömegű test sebessége.
By: Nagy Tamás…. A rögzített tengely körül forgó merev testek forgásállapotát – dinamikai szempontból – a tehetetlenségi nyomaték és a szögsebesség szorzatával.
A forgómozgás dinamikája
Forgatónyomaték.
A forgómozgás és a haladómozgás dinamikája
Munka, energia teljesítmény.
Mechanikai alapfogalmak
Ütközések Ugyanazt a két testet többször ütköztetve megfigyelhető, hogy a következő összefüggés mindig teljesül: Például a 2-szer akkora tömegű test sebességváltozásának.
DINAMIKA (ERŐTAN) Készítette: Porkoláb Tamás. A TESTEK TEHETETLENSÉGE Miben mutatkozik meg? -Nehéz mozgásba hozni, megállítani a testeket – „ellenállnak”
AZ ERŐ HATÁSÁRA -mozgásállapot-változás -alakváltozás -forgás TÖRTÉNHET. AZ ERŐ HATÁSÁRA Készítette: Farkas Andor.
Rezgések Műszaki fizika alapjai Dr. Giczi Ferenc
SKALÁROK ÉS VEKTOROK.
PERDÜLET NAGY NORBERT I₂.
A tehetetlenségi nyomaték
Munka Egyszerűbben: az erő (vektor!) és az elmozdulás (vektor!) skalárszorzata (matematika)
47. Országos Fizikatanári Ankét április 3-7.
Dinamika alapegyenlete
Lendület, lendület-megmaradás törvénye. 1. Lendület Hétköznapi értelemben: A távolugró lendületet vesz, hogy messzebb ugorjon. A hintázó gyerekek lendületet.
Előadás másolata:

Pontrendszerek mechanikája 3. előadás Pontrendszerek mechanikája

A nyomatékvektor Vektor nyomatéka: a vektort balról vektoriálisan megszorozzuk a helyvektorral. Az erő nyomatéka: a forgatónyomaték Az impulzus nyomatéka: az impulzusnyomaték

Pontrendszerek mechanikája A súlypont Keressük azt a helyet, amelybe a két tömegpontot egyesítve azok együttes súlya ugyanakkora forgatónyomatékot fejt ki az origóra, mint amekkorát a két tömegpont súlya az eredeti helyükről.

A súlypont

A tömegközéppont tétele A pontrendszer tömegközéppontja úgy mozog, mintha a rendszer egész tömege ebben a pontban lenne egyesítve, és erre hatna a külső erők eredője. Az impulzustétel Külső erők hiányában, vagy ha eredőjük zérus, a pontrendszer impulzusa állandó

Példák ütközés

A rakéta

A nyomatékvektorok Az impulzus nyomatéka: az impulzusnyomaték (még egyszer) Az impulzus nyomatéka: az impulzusnyomaték Deriváljuk az idő szerint! Az erő nyomatéka: a forgatónyomaték

Az impulzusnyomaték tétele A pontrendszer impulzusnyomatékának megváltozása egyenlő a pontrendszerre ható külső erők forgatónyomatékával Az impulzusnyomaték megmaradásának tétele Ha a külső erők forgatónyomatékának összege zérus, a rendszer impulzusnyomatéka állandó

A szögsebesség, mint vektor

A Foucault-inga

Foucault (1819 - 1868) Párizs, Panteon, 1851.

Foucault-inga (67 m, 28 kg) Kuncz Adolf és Gotthard Jenő – Szombathely, 1880. (30 m, 30 kg)

A forgó test impulzusnyomatéka a Z tengelyre vonatkoztatott tehetetlenségi nyomaték Ha a külső erők forgatónyomatékának eredője zérus (M=0), akkor az impulzusnyomaték állandó (N=const.). DE Ha a belső erők hatására a test tehetetlenségi nyomatéka megváltozik, akkor a forgás szögsebessége is megváltozik úgy, hogy közben az impulzusnyomaték változatlan maradjon

A forgó test energiája

Első és másodrendű nyomatékok

Rúd tehetetlenségi nyomatéka

Korong tehetetlenségi nyomatéka

A Steiner-tétel A test tehetetlenségi nyomatéka a súlypontján átmenő tengelyre a legkisebb. Ha a forgástengelyt önmagával párhuzamosan eltoljuk, az új tengelyre vonatkozó tehetetlenségi nyomatékot úgy kapjuk meg, hogy a súlyponton átmenő tengelyre vonatkozó tehetetlenségi nyomatékhoz hozzá kell adni a test tömegének és a tengely-eltolás négyzetének a szorzatát.

A haladó és a forgó mozgás közötti szótár haladó forgó

Gördülés lejtőn

Gömb, henger és cső tehetetlenségi nyomatéka