Asszociáció
Ismérvek közötti kapcsolatok Függetlenség Determinisztikus kapcsolat Sztochasztikus kapcsolat: Két vagy több ismérv között fellépő, tendenciaszerűen érvényesülő valószínűségi kapcsolat.
A sztochasztikus kapcsolat típusai, az ismérvek fajtái szerint Asszociáció: minőségi vagy területi ismérvek között Vegyes: egy minőségi/területi és egy mennyiségi ismérv között Korreláció: két vagy több mennyiségi ismérv között
A kapcsolatszorossági mutatókkal szemben támasztott követelmények Egyértelmű definíció Zárt intervallumban mozogjon Célszerű, ha: 0 < mutató < 1 0: teljes függetlenség 1: függvényszerű (determinisztikus) a kapcs. Monotonitás
A Yule-féle asszociációs együttható értelmezése |Y|=0 függetlenség 0<|Y|<0,3 gyenge erősségű kapcsolat 0,3<|Y|<0,7 közepes erősségű kapcsolat 0,7<|Y|<1 szoros kapcsolat |Y|=1 függvényszerű kapcsolat Y>0 ha az azonos indexű ismérvek vonzzák egymást
Yule-féle asszociációs együttható X 1 Σ f11 f01 f10 f00 f1• f0• f•1 f•0 n
Egy vállalat alkalmazottainak száma 2000. szeptember 1-jén Vállalatvezetésben betöltött szerep Férfi (fő) Nő Összesen Vezető 12 1 13 Beosztott 18 9 27 30 10 40
Egy vállalat alkalmazottainak megoszlása 2000. szeptember 1-jén Vállalatvezetésben betöltött szerep Férfi (%) Nő Összesen Vezető 40,0 10,0 32,5 Beosztott 60,0 90,0 67,5 100,0
Egy vállalat alkalmazottainak száma 2000. szeptember 1-jén Vállalatvezetésben betöltött szerep Férfi (fő) Nő Összesen Vezető 12 1 13 Beosztott 18 9 27 30 10 40
Csuprov-féle asszociációs együttható A függetlenség feltételezésével számított gyakoriságokból indul ki.
Egy vállalat dolgozóinak szakképzettség szerinti csoportosítása Férfiak (fő) Nők (fő) Összesen (fő) Szakmunkás 76 16 92 Segédmunkás 20 48 68 Betanított munkás 15 25 40 Összesen 111 89 200
Egy vállalat dolgozóinak megoszlása Szakképzettség Férfiak Nők Összesen megoszlása fő % Szakmunkás 76 68 16 18 92 46 Segédmunkás 20 48 54 34 Betanított munkás 15 14 25 28 40 111 100 89 200
Tényleges és feltételezett gyakoriságok Megnevezés Tényleges Feltételezett Tényleges és feltételezett gyakoriságok χ2 képzése gyakoriságok különbség különbségeinek négyzete f f* f-f* (f-f*)2 Férfiakból: Szakmunkás 76 51 25 625 12,3 Segédmunkás 20 38 -18 324 8,5 Betanított 15 22 -7 49 2,2 Nőkből: 16 41 -25 15,2 48 30 18 10,6 Betanított m. 7 2,7 Összesen 200 - 51,5
Töltse ki az alábbi táblázatokat az ismérvek és az azokhoz tartozó gyakoriságok megjelölésével úgy, hogy a megadott feltételeknek eleget tegyenek! 1 200 Y = 0 Y = -1
Köszönöm a figyelmet!