Ozsváth Károly TF Kommunikációs-Informatikai és Oktatástechnológiai Tanszék.

Slides:



Advertisements
Hasonló előadás
A pedagógiai kutatás módszertana
Advertisements

Kvantitatív Módszerek
Ozsváth Károly TF Kommunikációs-Informatikai és Oktatástechnológiai Tanszék.
Kvantitatív módszerek
Gazdasági informatika
Regresszió számítás Mérnöki létesítmények ellenőrzése, terveknek megfelelése Geodéziai mérések – pontok helyzete, pontszerű információ Lineáris regresszió.
Földrajzi összefüggések elemzése
Csoportosítás megadása: Δx – csoport szélesség
Lineáris és nemlineáris regressziók, logisztikus regresszió
Főkomponensanalízis Többváltozós elemzések esetében gyakran jelent problémát a vizsgált változók korreláltsága. A főkomponenselemzés segítségével a változók.
Összefüggés vizsgálatok
Becsléselméleti ismétlés
Összefüggés vizsgálatok x átlag y átlag Y’ = a + bx.
Gazdaságelemzési és Statisztikai Tanszék
Statisztika II. VI. Dr. Szalka Éva, Ph.D..
Regresszió és korreláció
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Dr. Szalka Éva, Ph.D.1 Statisztika II. VIII.. Dr. Szalka Éva, Ph.D.2 Többváltozós korreláció és regresszióanalízis.
Ozsváth Károly NYME ACSJK Testnevelési Tanszék. Faktor = „jellemző”, „háttérváltozó” A faktoranalízis (FA) alapjában a változók csoportosítására, redukciójára.
Ozsváth Károly NYME ACSJK Testnevelési Tanszék. II. Országos Sportinformatikai Szimpózium A sportinformatikai szimpózium előadásai kimondva.
Dr.Ozsváth Károly TF Kommunikációs-Informatikai és Oktatástechnológiai Tanszék.
Ozsváth Károly NYME ACSJK Testnevelési Tanszék. Fábián Gy. – Zsidegh M.: A testnevelési és sporttudományos kutatások módszertana, p. (SPSS: p.,
Ozsváth Károly TF Kommunikációs-Informatikai és Oktatástechnológiai Tanszék.
Ozsváth Károly NYME ACSJK Testnevelési Tanszék. A diszkriminanciaanalízis (DSC, DISCRIMINANT) /{ DA, MDA }/ csoportok közti különbségek (különbözőségek),
III. előadás.
Lineáris korreláció és lineáris regresszió. A probléma felvetése y = 1,138x + 80,778r = 0,8962.
Matematika III. előadások MINB083, MILB083
Növényökológia terepgyakorlat Fajok asszociáltságának vizsgálata I.) Az egyes esetek TAPASZTALT gyakorisága 1. táblázat A faj B faj+- +aba+b.
Növényökológia gyakorlat Fajok asszociáltságának vizsgálata I.) Az egyes esetek TAPASZTALT gyakorisága 1. táblázat A faj B faj+- +aba+b -cdc+d.
Regresszióanalízis 10. gyakorlat.
Változó képlethez változó kép
SPSS többváltozós (lineáris) regresszió (4. fejezet)
SPSS többváltozós regresszió
Kovarianciaanalízis Tételezzük fel, hogy a kvalitatív tényező(k) hatásának azonosítása után megmaradó szóródás egy részének eredete ismert, és nem lehet,
Dr. Szalka Éva, Ph.D.1 Statisztika II. VI.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Kvantitatív módszerek
Budapesti Műszaki és Gazdaságtudományi Egyetem
Matematikai statisztika Készítették: Miskoltzy Judit Sántha Szabina Szabó Brigitta Tóth Szabolcs Török Tamás.
Matematikai statisztika Készítették: Miskoltzy Judit Sántha Szabina Szabó Brigitta Tóth Szabolcs Török Tamás Marketing Msc I. évf., I. félév, levelező.
Matematikai statisztika Készítették: Miskoltzy Judit Sántha Szabina Szabó Brigitta Tóth Szabolcs Török Tamás Marketing Msc I. évf., I. félév, levelező.
Kvantitatív Módszerek
Idősor elemzés Idősor : időben ekvidisztáns elemekből álló sorozat
Többváltozós adatelemzés
Következtető statisztika 9.
A sztochasztikus kapcsolatok (Folyt). Korreláció, regresszió
Alapsokaság (populáció)
Lineáris regresszió.
Két kvantitatív változó kapcsolatának vizsgálata
Adatelemzés számítógéppel
Valószínűségszámítás - Statisztika. P Két kockával dobunk, összeadjuk az értékeket Mindegyik.
Bevezetés a Korreláció & Regressziószámításba
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Regresszió-számítás március 30. Dr. Varga Beatrix egyetemi.
Korreláció-számítás.
A számítógépes elemzés alapjai
Területi eloszlások és földrajzi összefüggések elemzése Regionális és környezeti elemzési módszerek I. BME Regionális és környezeti gazdaságtan mesterszak.
Gazdaságstatisztika Gazdaságstatisztika Korreláció- és regressziószámítás II.
Az Internet-felhasználás területi egyenlőtlenségeinek előrejelzése Magyarországon VIII. Fiatal Regionalisták konferenciája Győr, Készítette: Zsom.
Pedagógiai hozzáadott érték „Őrült beszéd, de van benne rendszer” Nahalka István
A számítógépes elemzés alapjai
Korreláció, regresszió
Lineáris regressziós modellek

Gazdaságstatisztika Konzultáció a korreláció- és regressziószámítás, idősorok elemzése témakörökből.
III. előadás.
Dr. Varga Beatrix egyetemi docens
Trendelemzés előadó: Ketskeméty László
Statisztika segédlet a Statistica programhoz Új verzióknál érdemes a View menüsor alatt a Classic menu-s verziót választani – ehhez készült a segédlet.
2. Regresszióanalízis Korreláció analízis: milyen irányú, milyen erős összefüggés van két változó között. Regresszióanalízis: kvantitatív kapcsolat meghatározása.
Dr. Varga Beatrix egyetemi docens
Előadás másolata:

Ozsváth Károly TF Kommunikációs-Informatikai és Oktatástechnológiai Tanszék

Vizsgálataink egyik gyakori kérdése, hogy van-e összefüggés a kapott eredmények között? A változók közötti összefüggések kimutatására és elemzésére a korreláció számítás szolgál. Korrelációs koefficiens (r): két sztochasztikus változó kapcsolatának mérőszáma.

Korrelációs koefficiens értéke 0-1 között változhat, előjele negatív és pozitív egyaránt lehet. (Értékkészlete tehát -1 és +1 közötti.) Minél nagyobb az (abszolút) érték, annál szorosabb az összefüggés. Az r=0 körüli értékek függetlenséget jelentenek. Az r= ± 1 függvénykapcsolatot jelent. A pozitív együtthatók azonos irányú kapcsolatot jelentenek: egyik változó nagyobb értékei a másik változó nagyobb értékeivel járnak együtt. A negatív korreláció ellentétes kapcsolatot jelent: az egyik változó nagyobb értékei a másik változó kisebb értékeivel járnak együtt. A korrelációs együttható szignifikanciáját külön meg kell vizsgálni. A kritikus értékek (n-2) szabadságfok mellett kerülnek meghatározásra. A nullhipotézis szerint nincs összefüggés a két változó között. Magas elemszámok esetén alacsony korrelációk is szignifikánsak, míg kis elemszámú mintáknál szoros korrelációk sem feltétlenül érik el a kritikus értékeket. A statisztikai programok a szignifikancia szinteket pontosan jelzik. A korrelációszámítás „folytatása” a regresszió, regresszióanalízis (RA, MRA, MVRA): az összefüggést leginkább jellemző függvény meghatározása és elemzése, a függvény („görbe”) szerinti becslés „jóságának”, pontosságának analízise.

Függő (y) és független (x) változó/k nem cserélhető/k fel! A függvény képlete szerinti értékek a „jósolt értékek” (y). A regressziós kapcsolat (illetve a függvények, görbék) fő típusai: lineáris polinomiális (n-ed fokú) parabolikus (másodfokú) logaritmikus exponenciális hiperbolikus hatvány

Fábián Gy. – Zsidegh M.: A testnevelési és sporttudományos kutatások módszertana, , p. Fájl: ergo.sta

Többszörös regresszióanalízis (MRA) – „standard” és lépésenkénti („stepwise”) módszerrel Fájl: eufit2004 ccc.sta 1 függő változó (összpontszám) 9 független változó (motoros tesztek) Cél: az összpontszám becslésére szolgáló regressziós egyenlet meghatározása

Stepwise változat

Bejelöljük az „Advanced” opciót

Válasszuk a módszerek közül a görgetősávnál valamelyik stepwise változatot. Célszerű az „előre lépésenkénti” módszert választani.

Az eredmények megjelenítéséhez választhatjuk a „csak összegzés”, vagy a „lépésről lépésre” lehetőségeket. (Utóbbi esetben a következő képernyőkön az „OK” gomb helyett a „Next” jelenik meg az utolsó lépésig.)

A független változók a regressziós modellbe történő bevonás „erősorrendjében” szerepelnek. A lépések során az R egyre nő, de csökkenő mértékben. A bevonáshoz/visszavonáshoz figyelembe vett F- értékek elvileg csökkenő tendenciát szoktak követni, ami jelen esetben nem teljesen következetes.

A regressziós modell egyenlete.

Jelen esetben a standard és a lépésenkénti MRA azonos eredményt adott, csak a stepwise változatnál a bevonás sorrendjében szerepelnek a független változók. A lépésenkénti eljárás lényegének megértéséhez nézzünk egy másik példát ugyanezen adatbázissal: ezúttal az állóképességi ingafutást tekintsük függő változónak.

Ha a standard változatot alkalmazzuk, akkor R=0,5015 mellett, F=1,22 p<0,3235 nem szignifikáns eredményt kapunk, a jósolt érték 22,571 hibája mellett. (Azaz ez a regressziós modell nem használható.)

Ha viszont a lépésenkénti többszörös regresszióanalízist választjuk, akkor csak 3 független változó kerül be a modellbe R=0,4849 mellett, és…

… a regresszió fennállására vonatkozó F=3,48 p<0,0262 szignifikáns eredményt kapunk. A jósolt érték hibája ezúttal 21. A gyakorlatban ez a modell sem használható, túl nagy a modell hibája. A lépésenkénti MRA azonban a standard változathoz képest egyszerűbb és szignifikáns eredményt adott, majdnem azonos többszörös korreláció (R) mellett. (A korrigált determinációs együttható itt R 2 =0,1676 szemben az előző 0,045-tel.)

The End of MRA