Látókör.

Slides:



Advertisements
Hasonló előadás
19. modul A kör és részei.
Advertisements

HÁROMSZÖGEK NEVEZETES VONALAI ÉS KÖREI
A geometriai inverzió Gema Barnabás.
KELETKEZÉSE HÁROMSZÖG OLDALAI HÁROMSZÖGEK TÍPUSAI OLDALAIK SZERINT
Síkmértani szerkesztések
Ptolemaiosz tétel bizonyítása 1.
Thalész tétele A síkon azoknak a pontoknak a halmaza, amelyekből egy adott AB szakasz derékszög alatt látszik, az AB átmérőjű kör, kivéve az AB szakasz.
Rajz alapfogalmak rajzeszközök, szerkesztések
2005. november 11..
Szerkessz háromszöget, ha adott három oldala!
Hegyesszögek szögfüggvényei
Háromszögek hasonlósága
A háromszög magasságvonalai egy pontban metszik egymást
Térelemek Kőszegi Irén KÁROLYI MIHÁLY FŐVÁROSI GYAKORLÓ KÉTTANNYELVŰ KÖZGAZDASÁGISZAKKÖZÉPISKOLA
Sokszögek modul Pitagórasz Hippokratész Sztoikheia Thalész Euklidesz
Hasonlósági transzformáció
A hasonlóság alkalmazása
Ívmérték, forgásszögek
Hegyesszögek szögfüggvényei
Thalész tétel és alkalmazása
Párhuzamos egyenesek szerkesztése
Műszaki ábrázolás alapjai
A háromszög nevezetes vonalai, pontjai
3. előadás GÉPRAJZ, GÉPELEMEK I..
3-4. előadás MŰSZAKI KOMMUNIKÁCIÓ.
A SZÖGEK.
Szakaszfelező merőleges
Háromszögek szerkesztése 4.
Háromszögek szerkesztése 2.
Háromszögek szerkesztése 3.
Háromszögek szerkesztése
A háromszögek nevezetes vonalai
A SZABÁLYOS TESTEK GÖMBI VETÜLETEI
Aranymetszés.
Szabály ötszög tízszög szerkesztése
Koordináta-geometria
Thalész tétel és alkalmazása
Háromszög nevezetes vonalai, körei
Hasonlósággal kapcsolatos szerkesztések
16. Modul Egybevágóságok.
Sims-1 A Simson-egyenes.
A háromszög Torricelli-pontja
Sims-1 This chapter is about Simson line. The question arises in connection with orthic triangles: from which points should we draw perpendicular lines.
1. feladat Egy 16 m oldalú szabályos háromszög alakú füves rét kerületén valamely csúcsból kiindulva méterenként elültettünk egy répát. Aztán kikötöttük.
1. feladat Egy egyiptomi pira-mis (négyzet alapú egyenes gúla) oldal-éle az alaplappal 60o-os szöget zár be. Mekkora a pira-mis oldallapjának és alaplapjának.
1. feladat Az ábrán egy épülő ház tetőszerkezetét látjuk. A „mester” szerint ez akkor lesz a legstabilabb, ha a „ferde” CD nyeregtetőt annak F felezőpontjában,
2005. november 18..
2005. október feladat (házi feladat) Pontban 3 órakor az óra mutatói éppen merő- legesek egymásra. Mikor lesznek legközelebb merőlegesek egymásra.
A háromszögekhez kapcsolódó nevezetes tételek
Geometriai transzformációk
Transzformációk egymás után alkalmazása ismétlés
Szögek, háromszögek, négyszögek és egyéb sokszögek, kör és részei.
Az inverzió Adott egy O középpontú, r sugarú kör, ez az inverzió alapköre Az O pont az inverzió pólusa Az r2 érték az inverzió hatványa Az O ponthoz.
Számtani és mértani közép
Geometriai számítások
Sokszögek fogalma és felosztásuk
HÁROMSZÖGEK EGYBEVÁGÓSÁGI TÉTELEI.
Fogalma,elemei, tulajdonságai, felosztása…
Hasonlósági transzformáció ismétlése
Érintőnégyszögek
A háromszög nevezetes vonalai
TRIGONOMETRIA.
Készítette: Horváth Zoltán
Árnyékszerkesztés alapjai
Geometria 9. évfolyam Ismétlés.
ELEMI GEOMETRIAI ISMERETEK
I. Szelő tétel és szerkesztése
Térelemek Kőszegi Irén KÁROLYI MIHÁLY FŐVÁROSI GYAKORLÓ KÉTTANNYELVŰ KÖZGAZDASÁGISZAKKÖZÉPISKOLA
Szögfüggvények és alkalmazásai Készítette: Hosszú Ildikó Nincs Készen.
19. modul A kör és részei.
Előadás másolata:

Látókör

Mintapélda14 Adott az AB szakasz. Szerkesszük meg azon pontokat a síkon, amelyekből AB szakasz 30°-os szögben látszik! Megoldás: Adott ívhez tartozó kerületi szögek egyenlők és fele akkorák, mint a húrhoz tartozó középponti szög. AB szakaszt egy kör húrjaként felfogva, ahhoz 60°-os középponti szög tartozik. A kör középpontját úgy szerkeszthetjük meg, ha AB szakaszra szabályos háromszöget szerkesztünk. A szakasz másik oldalára is megszerkeszthetjük a kört. Végül kiemeljük azokat a köríveket, amelyek eleget tesznek a feltételnek

Látókör fogalma Látókörívnek nevezzük azon pontok halmazát a síkon, amelyekből egy adott szakasz ugyanazon szögben látszik.

Mintapélda15 AB szakasz a kör egy pontjából 60°-os szögben látszik. Határozzuk meg, hogy mekkora szögben látszik a másik ívéről! Megoldás: A kör egy adott ívéről egyenlő nagyságú szögekben látszik a szakasz. Vizsgálhatjuk a szimmetrikus helyzetet. Legyen P pont az AB szakasz felezőmerőlegesének a köríven levő pontja. APQ szög 30°-os. Thálesz tétele miatt PAQ szög 90°, vagyis APB szög 60°. A szimmetriából adódik, hogy a másik ívről 120°-os szögben látszik az AB szakasz.

Ha egy húr a kör egyik ívének pontjaiból a szögben látszik, a másik ív pontjaiból 180° – a szögben. Mintapélda16 Egy háromszög két oldala a köré írt kör középpontjából 140°, illetve 160°-os szögben látszik. Mekkora szögben látszódnak az oldalak a köré írt kör pontjaiból? Megoldás: A kerületi szög a középponti szög fele, így  = 70°. A kör másik ívéről 180°-70°=110°-os szögben látszik az AC oldal. Hasonlóan kiszámítható a többi keresett szög is: 80°és 100°, illetve 30°és 150°.

Látókör szerkesztése A látókör megszerkesztéséhez felhasználjuk az érintőszárú kerületi szöget és azt, hogy a sugár merőleges az érintési pontba húzott érintőre. Az AB szakasz szögű látókörét a következő lépésekben szerkesztjük meg: 1. a szakasz egyik végpontjából felmérjük az  szöget (kapjuk e félegyenest); 2. e-re merőlegest állítunk a szakasz végpontjában (kapjuk g félegyenest); 3. megszerkesztjük a szakasz felezőmerőleges egyenesét (f egyenes); f és g metszéspontja adja az egyik kör középpontját (O1), amelyet tükrözve a szakasz egyenesére kapjuk a másik kör középpontját (O2); 4. a köröket megrajzoljuk, és kiemeljük az szöghöz tarozó látóköríveket. k2 A B k1 e a g f O2 O1

Mintapélda17 A térképen két hegycsúcsot és egy utat jelöltünk meg. Szeretnénk lefotózni az útról a két csúcsot úgy, hogy azok egy képre kerüljenek, és a két hegyen kívül eső részekből minél kevesebb essen a képre. Tudjuk, hogy az objektív látószöge 62°. Keressünk az úton olyan helyeket, ahonnan valószínűleg elkészíthető a kép. Megoldás: Megszerkesztjük a 62°-hoz tartozó látókört. A látókör és az út vonalának metszéspontjai (A és B pontok) adják a keresett helyeket.