Fotoszintézis I. Alapfogalmak A fotoszintézis mint redox folyamat

Slides:



Advertisements
Hasonló előadás
Kémiai reakciók és energia az élő szervezetekben
Advertisements

Az “sejt gépei” az enzimek
Az optikai sugárzás Fogalom meghatározások
FOTOSZINTETIKUS PIGMENTEK
TERMINÁLIS OXIDÁCIÓ.
A fotoszintézis molekuláris biológiája
! 4. FOTOSZINTÉZIS, FÉNYSZAKASZ
A glioxilát ciklus.
Készítette: Berényi Lili Sallai Andi
Összefoglaló feladatok
5. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek.
ENZIMOLÓGIA 2010.
Fotoszintézis I. A fényreakció Dr. Horváth Ferenc.
A fényenergia hasznosítása
Aminosavak bioszintézise
Szénvegyületek forrása
A glioxilát ciklus.
Növényélettan.
Elektrokémia kinetika Írta: Rauscher Ádám Bemutató: Kutsán György
A fotoszintézis élettani és ökofiziológiai vonatkozásai
Az elektrontranszportlánc működése
Fotoszintézis I. Alapfogalmak A fotoszintézis mint redox folyamat
Kémiai és biotechnológiai alapkutatások vízzáró rétegek és talajvizek halogénezett szénhidrogén szennyezőinek eltávolítására (Triklóretilén,TCE) Megvalósítás:
Redoxi-reakciók, elektrokémia Vizes elektrolitok
Növényélettan.
! 3. TERMINÁLIS OXIDÁCIÓ vagy VÉGOXIDÁCIÓ
A kloroplasztisz szerkezete és működése, a fotoszintézis
Agrár-környezetvédelmi Modul Talajvédelem-talajremediáció KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
BIOKÉMIAI ALAPOK.
FOTOSZINTETIKUS PIGMENTEK
A talaj 3 fázisú heterogén rendszer
Nukleotidok, nukleinsavak
Zsírsavak szintézise: bevezető
Nukleotidok.
Nukleusz A sejt információs rendszere
Képalkotó eljárások Spektroszkópiai alkalmazások.
A szingulett gerjesztett állapot dezaktiválódási csatornái E SS1S1 S2S2 T1T1 T2T2 ?
agrokémia Környezetgazdálkodási agrármérnök
5. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek.
A növények táplálkozása
Nukleotid típusú vegyületek
Nukleinsavak és a fehérjék bioszintézise
Produkcióbiológia, Biogeokémiai ciklusok
porfin – hem-proteinek
A fluoreszcens mikroszkópia. Az Elektromágneses sugárzás hatása az atomokra.
A légzés fogalma és jelentősége
Fotoszintézis 1. A fotoszintézis lényege és jelentősége
Sejtalkotók III..
Fotoszintézis Dr. Horváth Ferenc egyetemi adjunktus
A foszfát csoport az S, T és Y oldalláncok hidroxil- csoportjához kapcsolódik.
A növények táplálkozása
Fotoszintézis.
A fotoszintézis rejtelmei
FOTOSZINTETIKUS PIGMENTEK a tilakoid-membránok lipid-fázisának kb. felét pigmentek teszik ki a többi galaktolipid és foszfolipid kettősréteg (erősen telítetlen.
Spektroszkópia Analitikai kémiai vizsgálatok célja: a vizsgálati
48°. 2, Egy 8 cm-es gyújtótávolságú gyűjtő lencsével nézünk egy tárgyat. Hova helyezzük el a tárgyat, hogy az egyenes állású kép a d = 25 cm-es tiszta.
Felépítő folyamatok.
DNS szintézis, replikáció Információ hordozó szerep bizonyítéka Avery-Grifith kísérlet Bakterifágos kísérlet.
34. lecke A fehérjék felépítése a sejtben. Lényege: Lényege:  20 féle aminosavból polipeptidlánc (fehérjelánc) képződik  A polipeptidlánc aminosav sorrendjét.
Mitokondrium Kloroplasztisz. Nagy energiaátalakítással járó folyamatok Lebontáskor felszabaduló E megkötött fényenergia ATP-ben raktározódik Hasonló felépítés.
2.2. Az anyagcsere folyamatai
30. Lecke Az anyagcsere általános jellemzői
Fotoszintézis.
Fotoszintézis 1. A fotoszintézis lényege és jelentősége
H+-ATP-áz: nanogép.
Analitikai Kémiai Rendszer
ENZIMOLÓGIA.
Citokróm oxidáz.
Fotoszintézis.
! 3. TERMINÁLIS OXIDÁCIÓ vagy VÉGOXIDÁCIÓ
Előadás másolata:

Fotoszintézis I. Alapfogalmak A fotoszintézis mint redox folyamat A fotoszintetikus apparátus Pigmentek és pigment-protein komplexek A fény abszorpciója A gerjesztési energia sorsa A két fotokémiai rendszer Az elektrontranszport lánc felépítése

A fotoszintézis jelentősége Az élővilág energia -forrása Szerves anyagok előállítása szervetlenekből (Az ábrán a keményítő szemcsék láthatók) A Föld légkörének oxigéntartalma ebből a folyamatból ered

1) Bevezetés - redox folyamat - a fény és sötét szakasz - fényszakasz: két fotokémiai rendszer, PS II és PS I.

A fotoszintézis két fő szakasza: a fényreakciók és a sötét reakció

A fotoszintézis mint redox folyamat H2D + A →fény→ H2A + D Ha víz a donor és CO2 az akceptor: 2nH2O + nCO2 →fény→ n(CH2O) + nH2O + nO2

1. Fényszakasz: A fényt fotoszintetikus pigmentek abszorbeálják A fényt abszorbeáló pigmentek a cianobaktériumokban és magasabbrendű növényekben: Kolorofill a, b Karotinoidok Fikobilinek (cianobaktériumokban és vörösmoszatokban)

A prizmával alkotóelemeire bontott fehér fény kék és vörös hullámhosszú komponenseivel megvilágított régió köré gyűlnek az aerob baktériumok a fotoszintetizáló Spirogyra körül

A levél keresztmetszete

14-35b A kloroplasztisz szerkezete Kettős borítómembrán határolja Folyékony közege a sztróma –benne enzimek, keményítőszemcsék, DNS és riboszómák Membránrendszere tilakoidokból áll– ezek helyenként gránumokba rendeződik A tilakoidok belső üregei egy összefüggő, lumen nevezetű hálózatot alkotnak

A fotoszintetikus apparátus szerkezete kloroplasztisz; tilakoid membránok gránum és sztróma kapcsolt és nem-kapcsolt felszínek a proteinkomplexek szerveződése a tilakoid membránban

A pigment-protein komplexek rendezetten helyezkednek a tilakoidmembránban

Honnan származik a kloroplasztisz?

14-41 A fénybegyűjtő pigmentek: Klorofill Porfirin gyűrű – négy pirrolgyűrűből áll A négy pirrolgyűrű mellett egy öttagú ciklopentanon gyűrű található A konjugációs rendszer kékkel jelölve Magnézium ion – Mg++ - narancs Észter kötéssel csatlakozó fitol – zöld Ez a klorofilla – a többi klorofill kicsit külőnbözik.

Klorofillok

A karotinoidok járulékos pigmentek

Fikobilinek: cianobaktériumokban, vörös algákban A pirrol gyűrűk nem záródnak porfirin gyűrűvé

Pigment-protein komplexek: Klorofill - protein komplexek: a) CC I. (P-700), I. reakciócentrum b) LHC I. I. fénybegyűjtő komplex apoprotein kód a sejtmagban c) CC II. (P-680), II. reakciócentrum (6 fehérje) d) LHC II. II. fénybegyűjtő komplex Fikobiliproteinek allofikocianin, fikocianin, fikoeritrin = fikobiliszóma

A fényenergia abszorpciója

A fény abszorpciója és a gerjesztési energia sorsa Fotoszintetikusan aktív fény ~ 400-700 nm-ig Klorofill molekula: alapállapot (S0), Egy p- elektron kötő pályáról lazító pályára lép. szinglet (S1 és S2) és triplet (T1) állapotok vörös fény elnyelése: S1 állapot kék fény elnyelése: S2 állapot A gerjesztési energia sorsa: hővé alakul, fluoreszcencia, fotokémiai reakciók (redox folyamatok) energia migráció vagy energia transzfer (azonos vagy kémiailag eltérő pigmenteknek adódik át az energia)

A klorofill fluoreszcenciája akkor is a vörös hullámhossz tartományba esik, ha kék fényt nyel el Ok: az S2-S1 átmenet mindig hő formájában disszipálódik

A fény abszorpciója és a gerjesztési energia sorsa Kvantumhatásfok és kvantum szükséglet Kvantumhatásfok (Φ): azon excitált molekulák hányada, amelyek egy bizonyos módon veszítik el energiájukat. Értéke 0-1. Pl. fotokémiai reakciók száma/összes abszorbeált kvantumok száma (ált. 0.95) Kvantum szükséglet: az egy bizonyos reakciótermék (pl. O2) létrejöttéhez szükséges kvantumok száma, azaz 1/ Φ.

A fluoreszcencia imázs analízis a lézerrel egy ponton gerjesztett fluoreszcencia terjedését mutatja a levél felszínén (a megvilágított minták effektív kvantumhatékonyságának a képe)

A növényzet fluoreszcenciája műholdas felvételeken is detektálható Kaliforniai öböl, algavirágzás, 2002. október 6., számítógépes színek, a kék az alacsony, a vörös a nagy intenzitású fluoreszcencia

Az antennapigmentek az elnyelt fényenergiát a reakciócentrum klorofilla felé továbbítják A fényenergia vándorlása: antenna pigmentek között: külső és belső antennák reakciócentrumok klorofill a molekulájához: II. fotokémiai rendszer: P680, I. fotokémiai rendszer: P700

Energiaátadás két pigment molekula között akkor történik, ha a donor molekula abszorpciós vagy fluoreszcencia spektruma részben fedi egymást

Energia migráció, energia transzfer és fotokémiai folyamatok 14-43 Energia migráció, energia transzfer és fotokémiai folyamatok A fénygyűjtő komplex (LHC II. és I.) a kísérőpigmentek által elnyelt fényenergiát a reakciócentrum klorofillokhoz közvetíti. A fénybegyűjtő komplexek pigmentjei magasabbrendű növényekben klorofill a és b, karotin és xantofill molekulák, gyakran fehérjékhez kötődve. A gerjesztett pigmentek energiája rezonancia által átadódik a reakciócentrumba. A fényenergia kémiai energiává alakulása: töltésszeparációval Donor Kla Akceptor; Donor Kla Akceptor Donor Kla  Akceptor; Donor Kla Akceptor

A két fotokémiai rendszer Korai bizonyítékok A „vörös esés” A „kromatikus átmenetek”

A két fotokémiai rendszer Korai bizonyítékok Az „antagonisztikus effektus” Az „erősítési effektus”

1. A PS II felépítése - reakciócentrum: D1 és D2 fehérjék: ehhez kapcsolódnak a feofitin (primer e- akceptor), a QA és QB kinon akceptorok, D1 fehérje 161. tirozin aminosava (primer e- donor) Mn2+, Mn3+ ionok (vízbontás) - reguláló sapka - proximális antenna - disztális antenna 2. Funkciói vízbontás: 2H2O  O2 +4H+ + 4e- proton keletkezik a lumenben, elektron lép az e- transzportláncba a plasztokinon redukciója

A PS II felépítése

A PS I felépítése Az I. fotokémiai rendszer Reakciócentrum: heterodimer 82-83 kDa fehérje P-700; A0 (10 ps);, A1 (50 ps): elsődleges, másodlagos e-akceptorok (kla; ill. K-vitamin- fillokinon) Vas-kén centrumok: FX, FB, FA (4Fe-4S)

A PS I felépítése

Az elektrontranszportlánc felépítése - membránhoz kötött komponensek PS II, citokróm b6/f komplex, PS I, ferredoxin-NADP+ reduktáz - mobilis komponensek plasztokinon pool, PQH2 (membránban, PS II. és citokróm b6/f komplex között) plasztocianin, PC (lumen, citokróm b6/f komplex és PS I. közt) ferredoxin (PS I. és ferredoxin-NADP+ reduktáz között)

Energiaszint változások a fotoszintézis folyamán

14-47 Az elektrontranszportlánc két formája A nem ciklusos elektrontranszport (Z séma) A ciklikus variációban a ferredoxin a citokróm b6/f komplexnek adja át az elektront. A fény ily módon a PSI egyedüli részvételével körbe hajtja az elektronokat és így hoz létre H+ koncentráció-különbséget a sztróma és a luminális tér között. Ez ATP szintézisre használódik fel.

A PS II energia szint változásai és kinetikai paraméterei

Az LHC II szabályozza az energiamegoszlást a PS II és PS I között

Kautsky effektus II. A fluoreszcencia indukció és kioltás szakaszai F0 = minimális fluoreszcencia Fm = maximális fluoreszcencia Fv = változó fluoreszcencia Fv = Fm - F0 ; Fv/Fm max. 0,84 D → P; PSII → PSI e- átmenet Fluoreszcencia kioltás: fotokémiai és nem-fotokémiai P → M → T szakaszok

A vízbontó enzim állapotváltozásai S0 : S1 : S2 : S3 = 0,25 : 0,75 : 0 : 0

A plasztokinon mint mobilis komponens

A plasztokinon mint mobilis komponens

A citokróm b6/f komplex működése oxidálja a PQH2-t, redukálja a PC-t a ciklusos elektrontranszportban oxidálja a ferredoxint proton átadást közvetít a sztrómából a lumenbe Fd Fd -50 mV -150 mV -50 mV -150 mV

A PS I. felépítése és működése Reakciócentrum: 2 db centrális fehérje P700 klorofilla elsődleges (Kla) és másodlagos (K-vitamin) akceptorok vas-kén centrumok PC és ferredoxin kötő fehérjék Nem ciklusos elektrontranszport: az e- a NADP+ felé, Ciklusos elektrontranszport: e- a citokróm b6/f komplex felé Ferredoxin, ferredoxin-NADP+ reduktáz, NADP+ Eredmény: NADPH + H+

Ferredoxin-NADP reduktáz LUMEN SZTRÓMA

A kemiozmotikus mechanizmus. Fotofoszforiláció. Peter Mitchell 1963; Nobel díj 1978: Kapcsolódás a H+ elektrokémiai potenciálgradiens és a sejt munkavégzése között szelektíven permeábilis membránon keresztül: μH+ = p = ψ – 2.3RTpH /F elektrokémiai proton membrán pH gradiens H+ gradiens mozgató potenciál p = ψ – 59pH (mV) ATP szintáz (F0-F1 típusú ATPáz) – fotofoszforiláció

8. A fotoszintetikus foszforiláció: a Mitchell-f 8. A fotoszintetikus foszforiláció: a Mitchell-f. kemiozmotikus mechanizmus Jagendorf: az ATP képződés mechanizmusa, bizonyítás CF0/CF1 ATP szintáz felépítése ATP szintézis

A fotoszintetikus foszforiláció: kemiozmotikus modell proton elektrokémiai potenciálgrádiens a lumen és a sztróma között: ezt használja fel az ATP- szintáz enzim az ATP szintézisére ADP-ből és anorganikus foszfátból

Az elektontranszportlánc és a foszforiláció A két folyamat között olyan szoros a kapcsolat hogy ATP-képződés nélkül az elektrontanszportlánc leáll és fordítva. Szétkapcsoló anyagok megszüntetik ezt a szoros kapcsolatot. Ilyen szétkapcsoló anyagok a következők: CCCP, valinomicin, gramicidin D, DCPIP stb. CCCP = karbonilcianid m-klorofenil hidrazon DCPIP = 2,6-diklorofenol indofenol

ÖSSZEFOGLALÁS