Rekombináns fehérjék termeltetési stratégiái Két fő stratégia: Aktív formában termeltetni a fehérjét, ahogy in vivo előfordul, szekretáltatni, hogy a diszulfid hidak kialakuljanak ha a fehérje mérgező a gazdasejtre, akkor először inaktív fehérjét állítunk elő, majd ezt aktiváljuk, ehhez kell az in vitro “refolding” Az aktív forma esetén “csak” tisztítani kell a fehérjét
REKOMBINÁNS FEHÉRJÉK AKTÍV FORMÁBA VITELE Három fő lépés: 1. Az oldhatatlan “inclusion body”-t szolubilizáljuk, alacsony vagy magas pH, emelt hőmérséklet, detergensek, magas koncentrációjú szervetlen sók, vagy szerves oldószerek. A legelterjedtebbek: urea, vagy guanidin-hidroklorid, esetleg redukálószer (pl. DTT) jelenlétében. 2. Refolding híg fehérje oldattal - ha nincs diszulfid híd, akkor a fehérje denaturálószer lassú eltávolítása - ha diszulfid hidak vannak, akkor a renaturáció mellett a diszulfid hidakat is ki kell alakítani, szerkezet stabilizáló hatásuk van. levegőztetés, tiol-diszulfid párok hozzáadása, pH optimalizálása 3. Az aktív és inaktív forma szétválasztása pl. affinittás kromatográfia, preparatív SDS-PAGE, RP-HPLC, FPLC stb.
trp promoter alapú vektorok - alaposan vizsgált, jósolható eredmény - erős, 2-30% a rekombináns/összfehérje - alapállapotban alacsony expresszió, de toxikus fehérjékre ez nem elég, pBR322 vektorban kb 50x-es indukció - majdnem minden E. coli sejtvonalban használható - magas kópiaszámú plazmidok nem használhatók, nincs elég trp represszor Probléma: triptofán elvonás az indukció – egy kissé nehézkes
Kétkomponensű trp alapú expressziós rendszer Invitrogen ptrp cI Kromoszómán integrálva
T7 RNS polimeráz alapú vektorok - T7 promoter nagyon szelektív, a gazdában nincs ilyen promoter általában - T7 RNS polimeráz 5x gyorsabb, mint az E. coli-é, azaz már a transzkript is domináns Gazdasejtek: Standard klónozó vektorok klónozásra BL21 (F-, ompT-, lon-) expresszióra, lizogén sejtváltozatok: DE3 bakteriofág, immunitási régió, lacI gén, lacUV5 promoter lacZ eleje + T7 RNS polimeráz génje, integrálva kromoszómába Nagyon toxikus fehérjék esetén pLysS, pLysE T7 lizozim: természetes inhibitora a T7 RNS polimeráznak, E. coli tudja tolerálni, mert nem képes áthatolni a belső membránon pACYC184 vektorba van beépítve, catr, kompatibilis vektor pLysE nagy mennyiséget, pLysS kevesebb mennyiséget termel (ellentétes orientáció, tet promoter CE6 bakteriofág tartalmazza a T7 RNS polimeráz génjét, így az indukció kívülről bejuttatott gén
A pET vektorokon alapuló, indukálható fehérje termelés elvi sémája kromoszóma lacI lacUV5 lacZ T7 RNS polimeráz int vektor Prom. RBS 10 vagy T7/lac termeltetendõ fehérje génje ORI bla
A pET rendszer
pET vektorok 1. Transzkripciós vektorok T7lac promoteres változatok pBR322 származékok, ampicillin, vagy kanamicin rezisztensek 10 promoter, a T7 fág 10-es génjének (kapszid) erős promótere 1. Transzkripciós vektorok T7 promoter van, de nincs transzlációs iniciációs szignál különféle verziók, stop szignálok bevitele vagy sem, fúziós partner esetleg a C terminálison Visszaszorulóban vannak T7lac promoteres változatok Nagyon toxikus fehérjék esetén dupla biztosítás: a T7 promotertől startpont környékére a lac operátor szekvencia klónozása, elegendő lacI biztosítása, a vektorba beépítették ellentétes irányban
Két transzkripciós vektor példa
Transzlációs vektorok 10 transzkripciós és transzlációs szignálok, mindegyik típusú egy sorozat különböző leolvasási keretekkel Egy rövid fúzió az első 10 aminosavval (g10), de NdeI-gyel elkerülhető. Esetenként 206aa fúzió stabilitás
Plazmid stabilitási teszt lemezek: ampicillin, IPTG, mindkettő és egyik sem Mik nőnek fel? 1. egyik sem: minden sejt 2. ampicillin: plazmid tartalmú sejtek, 3. IPTG: plazmid mentes sejtek, vagy expressziós mutánsok 4. IPTG, amp.: plazmid marad, de az expressziós készség elveszett
ptac alapú vektorok: pGEX sorozat GST: mindig N-terminális fúzió elvileg szolubilizál Nem lehet denaturáltan tisztítani
Arabinóz alapú expressziós vektorok Vektor felépítés Szabályozás Szekréciós vektor Kontrollálhatóság
Fehérje termeltetés in vitro In vitro transzláció Előnyei: Oxidatív környezet Citotoxicitás elkerülése, farmakológiai alkalmazások Nincs membrán, a termék azonnal a reaktortérbe kerül gyors Hátrányai: Drága Kitermelés korlátozott Két fő stratégia RNS polimerázzal +sejt extraktummal Tiszta komponensekből
Az in vitro fehérjetermeltetés folyamatábrája
T7 alapú rendszerek
Az igazán in vitro rendszer
ATGGAACGCCGCTATTGCCATCGCATTAGCACCATGGCGAGCGCGAACGATCATGCGCCGCCGTATAACGAATGGTATGAAGCGCGCTAA
MERRY CHRISTMAS AND HAPPY NEW YEAR 1 atggaacgccgctattgccatcgcattagcaccatggcgagc m e r r y c h r i s t m a s gcgaacgat a n d catgcgccgccgtataacgaatggtatgaagcgcgctaa h a p p y n e w y e a r -