KÉMIAI KÖTÉSEK KÉPZŐDÉSE ÉS FELBOMLÁSA

Slides:



Advertisements
Hasonló előadás
Szén nanocsövek STM leképezésének elméleti vizsgálata
Advertisements

Az optikai sugárzás Fogalom meghatározások
Fémkomplexek lumineszcenciája
5. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek.
majdnem diffúzió kontrollált
SO 2, NO x felbontási hatásfokának vizsgálata korona kisülésben Horváth Miklós – Kiss Endre.
Pozitron annihilációs spektroszkópia
A reakciókinetika időbeli felbontásának fejlődése.
1. A KVANTUMMECHANIKA AXIÓMÁI
Címlap Keszei Ernő ELTE Fizikai Kémiai Tanszék Femtoszekundum felbontású kémiai kinetikai mérések dekonvolúciója genetikus.
Unimolekulás reakciók kinetikája
Az elektromágneses spektrum
Femtokémia: címFemtokémia: Fizikai Kémiai Tanszék Reakciókinetikai Laboratórium Keszei Ernő molekuláris történések kémiai reakciók közben
Borán es foszfin molekulák kölcsönhatása oldatfázisban
Molekulák etológiája ELTE TTK Kémiai Intézet Fizikai Kémiai Tanszék cím Molekulák etológiája avagy molekulaszerkezet és dinamika femtoszekundum időfelbontással.
Dekonvolúciós módszerek femtokémiai alkalmazása
Címlap FEMTOKÉMIA Molekulák dinamikájának kísérleti megfigyelése és szabályozása.
Kísérleti módszerek a reakciókinetikában
A kvantummechanika rövid átismétlése
Spektroszkópiáról általában és a statisztikus termodinamika alapjai
Sugárzás-anyag kölcsönhatások
NANOMECHANIKAI RENDSZEREK OTT, AHOVA A KVANTUM-KLASSZIKUS HATÁRT VÁRJUK Egyre könnyebb nanomechanikai oszcillátorok - rajtuk a megfigyelést segítő tükörrel.
Ezt a frekvenciát elektron plazmafrekvenciának nevezzük.
1 A napszélben áramló pozitív töltésű részecskék energia spektruma.
MO VB Legegyszerűbb molekulák: kétatomos molekulák a.) homonukleáris
Folytonos jelek Fourier transzformációja
Hagyományos reakciókinetikai mérés:
A szingulett gerjesztett állapot dezaktiválódási csatornái E SS1S1 S2S2 T1T1 T2T2 ?
Tételjegyzék a 2006/7 tanév tavaszi félévére 1.Gerjesztett állapotok keletkezése és dezaktiválódása – a Jablonski diagramm. 2.Fontosabb vizsgálati módszerek.
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA. Lézer: erős, párhuzamos fénysugarat adó fényforrás. Light Amplification by Stimulated Emission of Radiation L ASER.
3. Ionkristály lézerek A lézerközeg: fémoxid v. fémhalogenid, amelyben a fémionok kis részét másik fémion („szennyező”) helyettesíti Egykristály: kis spektrális.
LÉZEREK MŰSZAKI ÉS ORVOSI ALKALMAZÁSAI
A moláris kémiai koncentráció
Lézerspektroszkópia Előadók: Kubinyi Miklós Grofcsik András
1 6. A MOLEKULÁK FORGÁSI ÁLLAPOTAI A forgó molekula Schrödinger-egyenlete.
S UGÁRZÁS KÖLCSÖNHATÁSA AZ ANYAGGAL XPS MÓDSZEREK TÍPUSAI ÉS ANALITIKAI ALKALMAZÁSAI C.S. Fadley - X-ray photoelectron spectroscopy: Progess and perspectives,
3. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy
5. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek.
Kubinyi Miklós ) Lézerspektroszkópia Kubinyi Miklós )
Magyar Tudományos Akadémia Atommagkutató IntézetDebrecen Valósidejű megfigyelések atomi időskálán Tőkési Károly.
Cím ELTE TTK Kémiai Intézet Fizikai Kémiai Tanszék Keszei Ernő Az időmérés felbontásának tíz milliárdszoros növekedése (mindössze)
Unimolekulás reakciók kinetikája
Címlap Keszei Ernő ELTE Fizikai Kémiai Tanszék Evolúciós módszerek ultragyors kinetikai eredmények hatékony kiértékelésére.
Kémiai reakciók.
Raman spektroszkópia hn0 hn0 hn0 hn0 hn0 hn0 hnS hnAS
Lézerek alapfelépítése
„Mintakezelés” a spektroszkópiában
Raman spektroszkópia hn0 hn0 hn0 hn0 hn0 hn0 hnS hnAS
Elektrongerjesztési (UV-látható) spektroszkópia
NIR-VIS spektrométerek. NIR-VIS spektrumok „NIR spectra ( cm -1 ) of polymers, monomers, plasticizers, lubricants, antidegradantes (antioxidantes,
STACIONÁRIUS RÉSZECSKETRANSZFER SZIMULÁCIÓJA MONTE CARLO ALAPOKON Kristóf Tamás Pannon Egyetem, Kémia Intézet Fizikai Kémia Intézeti Tanszék „Szabadenergia”
Anyagvizsgálat optikai és magneto-optikai spektroszkópiával Kézsmárki István, Fizika Tanszék, docens Magneto-optikai csoport.
Szép és hasznos kvantummechanika
Az anyagszerkezet alapjai
Schrödinger-macskák Élő és halott szuperpoziciója, összefonódva azzal, hogy egy radioaktív atom már elbomlott (↓), ill. még nem bomlott el (↑) : Hogy lehet.
Címlap Betekintés a valószínűségszámításba Keszei Ernő ELTE Fizikai Kémiai Tanszék
Kémiai reakciók Kémiai reakció feltételei: Aktivált komplexum:
Az atommag alapvető tulajdonságai
A fény és az anyag kölcsönhatása
Spektroszkópia Analitikai kémiai vizsgálatok célja: a vizsgálati
48°. 2, Egy 8 cm-es gyújtótávolságú gyűjtő lencsével nézünk egy tárgyat. Hova helyezzük el a tárgyat, hogy az egyenes állású kép a d = 25 cm-es tiszta.
Nagyfeloldású Mikroszkópia Dr. Szabó István 12. Raman spektroszkópia TÁMOP C-12/1/KONV projekt „Ágazati felkészítés a hazai ELI projekttel.
A reakciókinetika időbeli felbontásának fejlődése
Analitikai Kémiai Rendszer
Fizikai kémia 2 – Reakciókinetika
Fizikai kémia 2 – Reakciókinetika
A mai beszélgetés lényege
Kísérleti módszerek Kísérleti módszerek
Kísérletek „mezoszkópikus” rendszerekkel!
Femtokémia: Fizikai Kémiai Tanszék Reakciókinetikai Laboratórium cím Femtokémia: molekuláris történések közvetlen megfigyelése kémiai reakciók közben.
Előadás másolata:

KÉMIAI KÖTÉSEK KÉPZŐDÉSE ÉS FELBOMLÁSA címlap KÉMIAI KÖTÉSEK KÉPZŐDÉSE ÉS FELBOMLÁSA Nobel-díj az átmeneti állapot közvetlen spektroszkópiai megfigyeléséért Keszei Ernő ELTE Fizikai Kémiai Tanszék http://keszei.chem.elte.hu/

Mit jelent a „femtokémia” kifejezés? időskála Mit jelent a „femtokémia” kifejezés? triplett gerjesztett állapot élettartama szingulett gerjesztett állapot élettartama molekula- forgás molekula- rezgés elektron- és energia- átadás szolvatáció rezgési energia- eloszlás molekula-foton kölcsönhatás nukleonok mozgása atommagban atommag-neutrino kölcsönhatás a Föld kora az ember megjelenése az emberi élet hossza egy nap egy perc 1015 1012 109 10 -15 10 -18 10 -21 10 -24 106 103 10 -6 10 -3 10 -9 10 -12 1 tera- giga- mega- kilo- mikro- milli- nano- pico- femto- atto- zepto- yocto- peta- másodperc

Ahmed Zewail, az 1999. évi kémiai Nobel-díjas 1946-ban született Egyiptomban. Tanulmányai: Alexandriai Egyetem (Egyiptom), majd Pennsylvaniai Egyetem (U.S.A.) Ph. D. 1974 1974–76 a University of California Berkely munkatársa, 1976– a California Institute of Technology munkatársa, 1990– professzor, a kémiai-fizikai részleg vezetője. Wolf-díj (1993), Nobel-díj (1999). (Ki Kicsoda, 2000) A Nobel-díjat kémiai reakciók átmeneti állapotainak femtoszekundumos spektroszkópiai vizsgálataiért kapta.

Egy kis történelem: kémiai reakciók dinamikájáról Pfaundler: ütközési elmélet és a Maxwell-Boltzmann eloszlás alkalmazása reakciók értelmezésére. Reakció csak egy adott küszöbenergiánál nagyobb energiájú molekulákkal történik 1867 Marcelin: a Lagrange-Hamilton mechanikai formalizmus és a Gibbs-féle statisztikus termodinamika alkalmazása N atomos reagáló rendszer 2N dimenziós fázistérben 1914 Eyring és Polányi átmenetiállapot-elmélete (abszolút sebességi elmélet, átmeneti komplex elmélet) N atomos reagáló rendszer útja egy potenciálfelületen 1935

Az átmeneti állapot elmélet AB + C [A····B····C]‡ A + BC Potenciális energia Vetület („térkép”): A + BC átmeneti állapot AB + C R BC R BC R AB R AB

Az átmeneti állapot elmélet

Az átmeneti állapot kísérleti kimutatása történelem 2 Az átmeneti állapot kísérleti kimutatása F + Na2 NaF + Na* [F····Na····Na ]‡ 1986 John Polanyi megosztott Nobel-díjat kap érte

Az átmeneti állapot kísérleti kimutatása NaD szárnyak Az átmeneti állapot kísérleti kimutatása F + Na2 NaF + Na* [F····Na····Na ]‡

Az átmeneti állapot kísérleti kimutatása NaD szárnyak 2 Az átmeneti állapot kísérleti kimutatása F + Na2 NaF + Na* [F····Na····Na ]‡ Na-D vonal intenzitása: 1 „szárnyak” intenzitása: 0.000001.....0.000002 szárnyak D-vonal  Ok: az FNa2‡ átmeneti állapot élettartama kb. 10 – 13 s a detektálás ideje kb. 10 – 7 s, és nem egyszerre keletkeznek az átmeneti állapotú molekulák

Egy kis lézerkémia: lézerfotolízis A– B – C A + BC Potenciális energia magasabb gerjesztett állapot gerjesztett állapot alapállapot A – BC távolság

Spektroszkópia femtoszekundum időfelbontással: a kísérleti berendezés pump-probe Spektroszkópia femtoszekundum időfelbontással: a kísérleti berendezés erősítő minta detektor H2O késleltetés gerjesztés mérés referencia Nd:YAG lézer Ar-ion lézer CPM lézer (1 fs = 0.3 m fényút) lézerekről: http://femto.chem.elte.hu/kinetika/Laser/Laser.htm

Spektroszkópia femtoszekundum időfelbontással: a kísérleti berendezés pump-probe 1 Spektroszkópia femtoszekundum időfelbontással: a kísérleti berendezés A kanadai Sherbrooke-i Egyetem 1988-ban létesített femtokémiai laboratóriuma 1 m lézerekről: http://femto.chem.elte.hu/kinetika/Laser/Laser.htm

Spektroszkópia femtoszekundum időfelbontással: a kísérleti berendezés pump-probe 2 Spektroszkópia femtoszekundum időfelbontással: a kísérleti berendezés prizma kettőstörő szűrő rés Ti-zafír kristály Ar-ion lézer lézerekről: http://femto.chem.elte.hu/kinetika/Laser/Laser.htm

Spektroszkópia femtoszekundum időfelbontással: a kísérleti berendezés pump-probe 3 Spektroszkópia femtoszekundum időfelbontással: a kísérleti berendezés késleltetés Faraday izolátor BBO dikroikus tükör monokromátor minta parabola optikai szál fényszaggató Ti-zafír lézer

Spektroszkópia femtoszekundum időfelbontással: a kísérleti berendezés pump-probe 4 Spektroszkópia femtoszekundum időfelbontással: a kísérleti berendezés 10 cm Az MTA SZFKI 2002-ben létesített femtokémiai laboratóriuma

Spektroszkópia femtoszekundum időfelbontással: az időbeli késleltetés intenzitás gerjesztés  késleltetés mérés

Spektroszkópia femtoszekundum időfelbontással: az időbeli késleltetés intenzitás gerjesztés  késleltetés mérés

Spektroszkópia femtoszekundum időfelbontással: az időbeli késleltetés intenzitás gerjesztés  késleltetés mérés

Spektroszkópia femtoszekundum időfelbontással: az időbeli késleltetés intenzitás gerjesztés  késleltetés mérés

Spektroszkópia femtoszekundum időfelbontással: a kísérlet elve pump-probe 5 Spektroszkópia femtoszekundum időfelbontással: a kísérlet elve rövid impulzus  koherencia és szelektivitás 1 fs = 0.3 m fényút

Spektroszkópia femtoszekundum időfelbontással: kísérleti eredmények pump-probe 6 Spektroszkópia femtoszekundum időfelbontással: kísérleti eredmények

Spektroszkópia femtoszekundum időfelbontással: kísérleti eredmények konvolúció Spektroszkópia femtoszekundum időfelbontással: kísérleti eredmények a lézerimpulzus – időben is – spektrálisan is kiszélesedik

lassított felvétel Spektroszkópia femtoszekundum időfelbontással: hogyan készül a lassított felvétel? 1 fs = 0.3 m fényút erősítő minta detektor késleltetés gerjesztés mérés referencia Nd:YAG lézer Ar-ion lézer CPM lézer 1. a minta felé indul egy gerjesztő impulzus 2. a gerjesztő impulzust követi adott késleltetéssel egy mérő impulzus 3. a detektor megméri a teljes lézerindukált fluoreszcenciát 4. a következő gerjesztő impulzus csak 0.1-0.001 másodperc után indul

lassított felvétel 2 Analógia: 100 méteres futóverseny videofelvétele hogyan készül a lassított felvétel? 1. a minta felé indul egy gerjesztő impulzus 1. a rajtpisztolyra elindul a futam 2. a gerjesztő impulzust követi adott késleltetéssel egy mérő impulzus 2. a rajtot követően adott helyen álló kamerához ér a mezőny 3. a detektor megméri a teljes lézerindukált fluoreszcenciát 3. a kamera ekkor felvesz egyetlen képkockát 4. a következő gerjesztő impulzus csak 0.1-0.001 másodperc után indul 4. a következő futam csak 30 ezer év múlva indul

I ··· CN Reakciótípusok, potenciálfelületek, ultragyors kinetika: az ICN molekula disszociációja ICN I + CN [I····CN ]‡

Potenciálfelületek közvetlen kísérleti meghatározása klasszikus mechanikai leírás Bersohn, R. , Zewail, A. H.: Ber. Bunsenges. Phys. Chem. 92, 373 (1988) klasszikus potenciál interatomos távolság reakcióidő

Potenciálfelületek közvetlen kísérleti meghatározása kvantummechanikai leírás Williams, S. O. , Imre, D. G.: J. Phys. Chem. 92, 6648 (1988) kvantum idő (fs) 20 hullámfüggvény 40 60 80 100 140 180 gerjesztett állapot potenciálja 4 8 10 C – I atomtávolság

Na ··· I Reakciótípusok, potenciálfelületek, ultragyors kinetika: a NaI molekula disszociációja Na+I – Na + I [Na····I ]‡

Na ··· I / 2 Reakciótípusok, potenciálfelületek, ultragyors kinetika: a NaI molekula disszociációja

ciklobután Reakciótípusok, potenciálfelületek, ultragyors kinetika: ciklobután bomlása ciklobután  2 etén  tapasztalt

Bimolekulás Reakciótípusok, potenciálfelületek, ultragyors kinetika: bimolekulás reakció IH · CO2  I + H · CO2 1. lépés: a reakció indítása: H + OCO  [H···O···C – O ]‡  HO + CO 2. lépés: bimolekulás reakció: Eredmény: az OH-gyök lézerindukált fluoreszcenciája kb. 5 ps felfutással alakul ki [H···O···C – O ]‡ Potenciális energia HO + CO H + OCO HOCO völgy reakciókoordináta

Köszönöm a figyelmüket ! VÉGE Köszönöm a figyelmüket !

Kémiai reakciók kvantumkontrollja: Válaszok / kontroll Kémiai reakciók kvantumkontrollja: az átmeneti állapot hullámfüggvényének alakítása Legtöbb (ipari szempontból érdekes) reakció többféleképpen is lejátszódhat Kvantumkontroll: az átmeneti állapot megfelelő alakításával elérhető, hogy csak a kívánt reakció játszódjon le, azaz csak a kívánt termék keletkezzen Módszer: az alkalmazott impulzusok tulajdonságait megfelelően változtatva (alak, polarizáció, spektrális eloszlás, köztük lévő késleltetés) megváltozik az átmeneti komplex hullámfüggvénye, azaz megváltozik a reakcióút, más és más termékek keletkezhetnek Megfelelő alkalmazásával kiváló lehetőség nyílhat adott tulajdonságú anyagok tiszta, környezetet kímélő, hulladékmentes előállítására, azaz a I zöld kémia jelenleg még előreláthatatlan fejlődésére

A kvantumkontroll gyakorlati kivitelezése Válaszok / kontroll 2 A kvantumkontroll gyakorlati kivitelezése Probléma: egy adott reaktánsállapot szelektív gerjesztése esetén a gerjesztési energia gyorsan szétoszlik a molekula többi módusára is (IVR = Internal Vibrational Relaxation; kb. 1 ps) Megoldás: a molekula különböző módusai közötti interferenciákat úgy kell befolyásolni, hogy konstruktív interferencia éppen a kívánatos reakcióutat megnyitó módus hullámfüggvényében lépjen fel Ehhez ismerni kell az impulzus(ok) és a molekula, valamint a molekula különböző módusai közötti csatolásokat Módszer: a molekula megfelelő belső koherenciáját az impulzus képviselte külső tér koherenciájának alakításával érjük el Néhány lehetőség: Frequency Resolved Coherent Control (CC): pl. két különböző frekvenciájú impulzus két disszociatív állapotot gerjeszt. Ekkor az impulzuson belül a két frekvencia relatív amplitúdója és fázisszöge változtatásval kontrollálható a reakció – azaz az impulzus spektrális összetételével és időbeli kiterjedésével Többfotonos CC: pl. két különböző frekvenciájú impulzus két (közel azonos energiájú) állapotot gerjeszt, de különböző számú foton elnyelésével. Ebben az esetben a felharmonikus frekvenciák arányát változtatják fáziseltolással.

Válaszok / Fourier Egy további lehetőség: Spektrálisan kiszélesedett impulzus ciripelésének szabályozása Legyen f (t) és F () egymás Fourier-transzformáltja az idő-, ill. frekvenciatérben: Definiáljuk ezek szélességét az alábbiak szerint: ahol N a négyzetes norma: Ha f differenciálható és , akkor

Válaszok / vibrációs fókusz Egy további lehetőség: Spektrálisan kiszélesedett impulzus ciripelésének szabályozása: a gerjesztett molekula hullámfüggvényének „vibrációs fókuszálása” az anharmonikus potenciálfelületen példa: I2 molekula rezgési hullámfüggvényének szelektív gerjesztése Krause, J. L. et al.: in: Femtosecond Chemistry, szerkesztő: Manz, J., Wöste, L., p. 743-777, VCH, Weinheim (1995) optimális lokalizáció

Egy érdekes alkalmazás: optikai centrifuga Válaszok / centrifuga Egy érdekes alkalmazás: optikai centrifuga Villeneuve, D. M. , et al.: Phys. Rev. Letters 85, 542 (2000) Két, spektrálisan kiszélesedett, cirkulárisan polározott impulzus ciripelésének szabályozása: a fotonokat abszorbeáló molekula az eredő forgó térerősséget látja.

Cl2 izotópszétválasztás Válaszok / centrifuga 2 optikai centrifuga Cl2 izotópszétválasztás

Elektron szolvatációja poláros oldószerekben Válaszok / elektron Elektron szolvatációja poláros oldószerekben vízben metanolban

Válaszok / elektron vízben Elektron szolvatációja vízben E. Keszei, S. Nagy, T. H. Murphrey, P. J. Rossky, J. Chem. Phys. 99, 2004 (1993) diabatikus kvantumdinamikai szimulációk vízben: indirekt szolvatáció direkt szolvatáció E. Keszei, T. H. Murphrey, and P. J. Rossky, J. Phys. Chem., 99, 22 (1995)

Elektron szolvatációja metanolban Válaszok / metanolban Elektron szolvatációja metanolban Keszei et al. JCP 99, 2004 (1993) C. Pépin, T. Goulet, D. Houde, J.- P. Jay-Gerin, JPC 98, 7009 (1994) Keszei et al. JPC 101, 5469 (1997): mindkét mechanizmus egyformán jó