Természetközeli szennyvíztisztítási technológiák

Slides:



Advertisements
Hasonló előadás
A szennyvíztisztítás biokinetikai problémái a gyakorlatban.
Advertisements

Levegőminőség. Terhelés minden olyan anyag és E, ami többletként adódik a természetes állapothoz Csoportosítás - méret/halmazállapot (ülepedő por, korom;
A környezetszennyezés forrásai
Városi szennyvíz irányelv (91/271/EGK)
A Duna-Tisza közi hátság vízgazdálkodás-fejlesztése a fenntartható vízügyi politika alapelvei szerint Dr. Madarassy László c. docens BME Vízépítési és.
ENVI-ART Környezetvédelmi Tanácsadó és Szolgáltató Kft.
VÍZMINŐSÉGSZABÁLYOZÁS ESZKÖZEI
PTE PMMK Környezetmérnöki Szak (BSC)
A területi vízgazdálkodási tervek készítéséhez (vizeink minősítése érdekében) végzett laboratóriumi mérésekből levonható következtetések Krímer Tibor.
Dr. Clement Adrienne Felszíni vizek minősége és terhelhetősége: a vízminőség-szabályozás új feltételrendszere a VKI tükrében BME VÍZI KÖZMŰ ÉS KÖRNYEZETMÉRNÖKI.
Regionális szennyvíz rendszerek befogadó vízminőségére gyakorolt hatásai: Szennyvíz agglomerációkra vonatkozó EU követelmények és hazai szabályozás.
TERMÉSZETES SZENNYVÍZTISZTÍTÁSI RENDSZEREK
HASZNÁLT HÉVIZEK FELSZÍNI BEFOGADÓBA TÖRTÉNŐ BEVEZETHETŐSÉGE,
Felszíni víz monitoring
Felszíni és felszín alatti víz monitoring
Felszíni vizek minősége
Innovatív szennyvíztechnológiai módszerek a felszíni vizekbe kerülő prioritás szennyezőanyag terheléseinek csökkentésére Dr. Fleit Ernő, egyetemi docens.
Kémiai szennyvíztisztítás
Természeti erőforrások védelme
KÖRNYEZETVÉDELEM VÍZVÉDELEM.
Levegőtisztaság-védelem 5. előadás
Levegőtisztaság-védelem 10. előadás Engedélyezési eljárások, eljáró hatóságok, eljárások menete, engedélykérelmek tartalmi követelményei.
Levegőtisztaság-védelem 1. előadás
Kommunális technológiák I. 6. előadás
Kommunális technológiák I előadás
Levegőtisztaság-védelem 10. előadás Engedélyezési eljárások, eljáró hatóságok, eljárások menete, engedélykérelmek tartalmi követelményei.
Levegőtisztaság-védelem 1. előadás
Vízminőség-szabályozás műszaki eszközei
Szennyvíztisztítás Melicz Zoltán Egyetemi adjunktus
Regionális szennyvíz rendszerek befogadó vízminőségére gyakorolt hatásai: Szennyvíz agglomerációkra vonatkozó EU követelmények és hazai szabályozás.
TERMÉSZETES SZENNYVÍZTISZTÍTÁSI RENDSZEREK
SZENNYVÍZTISZTÍTÁS.
KÉMIAI KEZELÉS ALKALMAZÁSA A SZENNYVÍZTISZTÍTÁSBAN
TÓ FOLYÓ VÍZMINŐSÉGSZABÁLYOZÁSI PÉLDA  C H3 Célállapot (befogadó határérték) Oldott oxigén koncentráció ChChChCh  C H2  C H2 - a 13 E 1 (1-X 1 ) - a.
Felszín alatti vizek minősítése
Felszín alatti vizek védelme
Települési vízgazdálkodás
Felszín alatti vizek minősítése
2011. évi CCIX. Tv. Konferencia neve, helye: Budapest, 2012 október 30. GWP-konferencia Vojtilla László elnöki tanácsadó Magyar Energia Hivatal.
Felszíni víz monitoring
Uránszennyezés a Mecsekben
Felszíni és felszín alatti vizek védelmével kapcsolatos szabályozás
Környezetvédelmi pályázatok a GOP-ban PÁTOSZ workshop április 21. Kovalszky Dóra, NFÜ GOP IH.
Levegőtisztaság védelme
Vízminőség védelem A víz az ember számára: táplálkozás, higiénia, egészségügy, közlekedés, termelés A vízben található idegen anyagok - oldott gázok -
Koordináció az egyes környezetvédelmi projekteknél Kis András Térségfejlesztési és Külügyi Iroda irodavezető-helyettes Szolnok szeptember 26.
Energia-visszaforgatás élelmiszeripari szennyvizekből
Zsuga Katalin – Szabó Attila: A Tisza hazai vízgyűjtőterületének ökológiai állapota, környezetvédelmi problémái Győri Katalin Dorottya geográfus III. évf.,
A felszíni vizek védelmének új szabályozása Botond György vezető főtanácsos Környezetvédelmi Minisztérium Környezeti Elemek Védelmének Főosztálya.
1 Dr. Dulovics Dezső, PhD. BME Vízi Közmű és Környezetmérnöki Tanszék   a LE-nél kisebb települések víziközmű helyzete, helyi szennyvízelhelyezés.
Beruházásokhoz kapcsolódó Környezetvédelmi tervezés és engedélyeztetés
A Duna partján történt események röviden! Pillman Nikolett Schäffer Ivett.
Tájékoztató A hígtrágya kijuttatásával és tápanyagként történő hasznosításával kapcsolatos talajvédelmi előírások betartásáról és az adatszolgáltatási.
Vízminősítés és terhelés számítás feladat
Szennyvíz-tisztítás.
Felszíni vizek minősége és terhelhetősége: a vízminőség-szabályozás új feltételrendszere a VKI tükrében Dr. Clement Adrienne BME VÍZI KÖZMŰ ÉS KÖRNYEZETMÉRNÖKI.
Központi Szennyvíztisztító Telep
hatásterület lehatárolása az IMMI 2011 szoftver segítségével
Élelmiszeripari szennyvizek tisztítása
A biológiai és a kémiai szennyvíztisztítás szimbiózisa
DUNA RÉSZVÍZGYŰJTŐ-GAZDÁLKODÁSI TERV FELÜLVIZSGÁLATA AZ ORSZÁGOS VÍZÜGYI FŐIGAZGATÓSÁG ÉS AZ ÉSZAK- DUNÁNTÚLI VÍZÜGYI IGAZGATÓSÁG SZAKMAI FÓRUMA FELSZÍNI.
A VÍZGYŰJTŐ-GAZDÁLKODÁSI TERVEZÉS IPART, KÖZLEKEDÉST ÉRINTŐ EREDMÉNYEI, AZ INTÉZKEDÉSEK PROGRAMJA ORSZÁGOS FÓRUM VÍZMINŐSÉG-VÉDELMI JOGSZABÁLYOK MÓDOSÍTÁSI.
A VÍZGYŰJTŐ-GAZDÁLKODÁSI TERVEZÉS IPART, KÖZLEKEDÉST ÉRINTŐ EREDMÉNYEI, AZ INTÉZKEDÉSEK PROGRAMJA ORSZÁGOS FÓRUM VESZÉLYES ANYAG TERHELÉS A FELSZÍNI ÉS.
A TISZA RÉSZVÍZGYŰJTŐ - GAZDÁLKODÁSI TERV FELÜLVIZSGÁLATA AZ ORSZÁGOS VÍZÜGYI FŐIGAZGATÓSÁG ÉS A KÖZÉP – TISZA - VIDÉKI VÍZÜGYI IGAZGATÓSÁG KÖZÖS SZAKMAI.
A VÍZGYŰJTŐ-GAZDÁLKODÁSI TERVEZÉS TELEPÜLÉSI VÍZGAZDÁLKODÁSSAL KAPCSOLATOS EREDMÉNYEI, AZ INTÉZKEDÉSEK PROGRAMJA ORSZÁGOS FÓRUM A KOMMUNÁLIS SZENNYVÍZTISZTÍTÁS.
Ökológiai szempontok a szennyvíztisztításban
VÍZMINŐSÉGSZABÁLYOZÁSI PÉLDA
Mikroszkópos biológiai problémák kezelése és alkalmazása a vízbiztonsági tervekben május 09. Előadó: Fazekas Zoltán Technológiai osztályvezető.
Előadás másolata:

Természetközeli szennyvíztisztítási technológiák Szabó Anita Egyetemi adjunktus BME Vízi Közmű és Környezetmérnöki Tanszék

Szennyvíztisztítási követelmények, hazai helyzet

Városi szennyvíz irányelv (91/271/EGK) Szükséges fejlesztések Teljesítési határidők (átmeneti mentesség Magyarország számára) 1998 vége (2008) 2000 vége (2010) 2005 vége (2015) Csatornázás >10 000 LEÉ, érzékeny >15 000 LEÉ, normál és kevésbé érzékeny > 2 000 LEÉ, mindenütt Biológiai tisztítás   > 2 000 LEÉ, mindenütt Tápanyag eltávolítás > 10 000 LEÉ, érzékeny - Ha a csatornán összegyűjtött szennyvíz 2000 LEÉ-nél kisebb településen történik, a fentiek vagy egyéb megfelelő tisztítási technológia alkalmazása szükséges

91/271/EGK Direktíva hatálya A 2000 lakosegyenérték feletti településekre tartalmaz előírást Nem kizárólagos megoldásként javasolja a hagyományos, közműves szennyvízelvezetési és tisztítási gyakorlat alkalmazását Azokon a településeken, településrészeken, ahol ez nem jelent környezetvédelmi szempontból előnyt, vagy pedig a beruházási és üzemeltetési költségek túlzottan megnőnének, a hagyományos rendszerekkel egyenértékű megoldások is alkalmazhatók

Nemzeti Települési Szennyvízelvezetési és -tisztítási Megvalósítási Program 25/2002. (II. 27.) rendelet (illetve az azt többször módosító 30/2006 (II. 8.) kormányrendelet) kijelölte azokat a szennyvíz- elvezetési agglomerációkat, melyek területén a csatornázást és az összegyűjtött szennyvizeknek az agglomerációk központjában történő tisztítását az EU követelményeknek megfelelően, négy ütemben kell végrehajtani. A nemzeti program B részeként a 174/2003. (X. 28.) számú, a közműves szennyvízelhelyező és –tisztító művel gazdaságosan el nem látható területekre vonatkozó Egyedi Szennyvízkezelési Nemzeti Megvalósítási Programról szóló kormányrendelet lehetőséget biztosít a szakszerű egyedi (nem közműves) szennyvízkezelés és elhelyezés alkalmazására. 2019-re vállalta Magyarország az összes települési szennyvíztisztító telepre érkező teljes N és P terhelés 75%-os csökkentését (2008: 70,5% N; 77,8% P)

A Szennyvíz program „A” és „B” komponensébe tartozó települések Méret kategória Összes tele-pülés Csator-názott* (2004) „A” program „B” program 163/ 2004 30/ 2006 >100 000 9 8 10 000 – 100 000 132 79 5 000 – 10 000 136 71 135 1 2 000 – 5 000 518 230 514 515 4 3 1 000 – 2 000 664 268 492 424 172 240 600 – 1 000 520 152 359 284 161 236 300 – 600 620 162 378 315 242 305 0 – 300 531 82 271 197 260 334 Összesen 3130 1052 2290 2012 840 1118 163/2004 (V. 21.) és 30/2006. (II. 8.) rendeletek alapján *Csatornázottnak tekintettük a települést ha a bekötött és nem bekötött lakások aránya együttesen elérte a 80%-ot.

1990 2003 2015

Emisszió szabályozás - elvi megfontolások Két típusú vízminőségi határérték: az elfolyó, tisztított szennyvizekre vonatkozó (emissziós határérték, effluent standards) a befogadóra vonatkozó (immissziós vagy befogadó határérték, stream standards vagy ambient water quality criteria) Gyakorlat: Együttesen alkalmazás, a kibocsátott tisztított szennyvizekre vonatkozó emissziós határértékek általában a gazdaságosságot is figyelembe vevő, technológiai határértékek, mint minimum követelmények Ha a befogadó minőségi határértéke nem tartható, terhelhetőségi számítások alapján szigorúbb elfolyó víz előírást vagy tisztítási követelményt kell alkalmazni

91/271 EGK: A biológiai tisztítással / tápanyag eltávolítással (érzékeny terület) szembeni kívánalmak Paraméter Koncentráció a tisztított szennyvízben Eltávolítás BOI5 (20oC-on) 25 (mg/l) 70-90 (%) KOI 125 (mg/l) 75 (%) Összes lebegőanyag >10 000 LEÉ 35 (mg/l) 90 (%) 2000-10000 LEÉ 60 (mg/l) 70 (%) Paraméter Koncentráció a tisztított szennyvízben Eltávolítás ÖP 10 000-100 000 LEÉ 2 (mg/l) 80% >100000 LEÉ 1 (mg/l) ÖN 15 (mg/l) 70-80% 10 (mg/l)

Hazai szabályozás 28/2004. (XII. 25.) KvVM rendelet „A vízszennyező anyagok kibocsátásaira vonatkozó határértékekről és alkalmazásuk egyes szabályairól” A rendelet kétféle típusú határértéket tartalmaz: Technológiai határérték: egyes gazdasági, háztartási, település-üzemeltetési tevékenységek általi szennyvíz kibocsátásra a rendelet 1. számú melléklete szerint megállapított vízszennyező anyag kibocsátási koncentráció vagy fajlagos kibocsátási érték. Területi határérték: a vízszennyező anyag közvetlen bevezetésére, a vízminőség-védelmi területi kategóriák figyelembevételével a rendelet 2. számú melléklete szerint megállapított kibocsátási koncentráció érték. Ezen felül, a hatóságoknak lehetőségük van egyedi elbírálás alapján a határértékek szigorítására vagy enyhítésére. Az egyedileg megszabott határértékek minimális és maximális értékeinek tartományát az 5. számú melléklet adja meg.

A határértékek alkalmazását a 220/2004. (VII. 21. ) Korm A határértékek alkalmazását a 220/2004. (VII. 21.) Korm. Rendelet szabályozza „A felügyelőség a kibocsátási határértéket a technológiai határérték és a területi határérték alapján határozza meg a következők szerint: ha a tevékenységre van technológiai kibocsátási határérték, akkor kibocsátási határértéknek azt kell előírni; ha a tevékenységre vagy a kibocsátásra jellemző szennyező anyagok közül egy adott szennyező anyagra nincs technológiai határérték, akkor a vonatkozó területi határértéket kell előírni kibocsátási határértéknek.”

A 28/2004. (XII. 25.) KvVM rendelet fontosabb határértékei a három+1 kategóriában Komponens Kiemelt (régi I.) Érzékeny (régi II.) Időszakos vízfolyás Normál (régi III-VI.) pH 6,5-8,5 6,5-9 KOICr g/m3 50 100 75 150 BOI5 g/m3 15 30 25 NH4-N g/m3 2 10 5 20 Összes N g/m3 35 55 Összes P g/m3 0.7 Oldószer extr. g/m3 Lebegőanyag, g/m3 200

Új szempontok: az EU VKI figyelembe vétele A 91/271 EGK Irányelvben előírt komponensekre a lakosegyenértéktől függő tisztított szennyvíz határértékek, illetve tisztítási hatásfokok minimum feltételként történő alkalmazása, minden szennyvíztisztító telepre (A minimum követelmények kiterjesztendők a 2000 lakosegyenérték alatti tartományra is (a 28/2004 (XII. 25.) KvVM rendelet 1. sz. mellékletének megfelelően) A kibocsátott tisztított szennyvíz előírásokat terhelhetőségi számítások alapján kell megállapítani, valamint több komponensre is kiterjeszteni, és amennyiben a VKI által előírt, a befogadóra vonatkozó, víztípustól függő vízminőségi célállapot (jó ökológiai és kémiai állapot) nem teljesül, szigorítani Ha a kibocsátás közvetlen vagy közvetett módon állóvízbe történik, a kritériumokat az állóvíz terhelhetősége alapján kell előírni. Egyes komponensekre területi érvényességgel is alkalmazható határérték (pl. Összes P-re a Balaton vízgyűjtőn 0,7 mg/l elfolyó víz határérték) A terhelhetőség vizsgálatát a vízjogi engedélyezés során el kell végezni, a VKI szerinti vízgyűjtő gazdálkodási tervek (VGT) készítésével összhangban (379/2007 (XII.23) Korm.rend.)

Szennyvízkibocsátás engedélyezése a VKI (befogadó célállapot) szerint Víztest jelenlegi állapota Célállapot Megengedhető terhelés meghatározása Eléri a célállapotot? Emissziós határérték szigorítása Szükséges terhelés csökkenés meghatározása A diffúz terhelések csökkentésével elérhető a célállapot? A szennyvíztisztító működésbe lépése után is elérhető a célállapot? Van-e egyéb, tervezett (új) szennyvíztisztító telep a víztesten? igen nem A tisztítási követelmény megfelelő, kibocsátási engedély kiadható nincs A meglévő pontforrások szabályozásával elérhető a célállapot? A felvízi vízminőség javításával elérhető a célállapot? A szennyvízbevezetés engedélyezése csak derogáció esetén van

Vízi közmű helyzet Magyarországon Vízellátás 95% felett Csatornázás kb. 70 %-os (bekötött lakások) 2500 településen nincs csatorna Közműolló még mindig nyitott (jelentős javulás az elmúlt 2 évtizedben) Következmény: felszíni és felszín alatti vízkészlet szennyeződik Egyre szigorúbb környezetvédelmi előírások (VKI)

Vízi közmű helyzet Magyarországon

Gazdasági helyzet Tőkehiány (EU és hazai források, pályázati rendszer, válság) Privatizáció/reprivatizáció? Környezetvédelem felértékelődése Speciális településszerkezet (települések 75%-a 2000 LEÉ alatti – 17%-a a lakosságnak) Kistelepülések speciális helyzete (magas fajlagos költségek – hagyományos megoldások nem fenntarthatók, kis fizetési hajlandóság) Következmény: Olcsó, hatékony és környezetkímélő szennyvíztisztítási eljárások iránt növekszik az igény

Szennyvízelhelyezés (”Szennyvíz Program”)

Szennyvíztisztítási technológiák Intenzív (konvencionális) Szennyezőanyag-eltávolítás felgyorsítva Energia-bevitel Vegyszerek alkalmazása Extenzív (természetes) Szennyezőanyag-eltávolítás nem felgyorsított Természeti erőforrások használata "low cost technology"

Szennyvíztisztítási technológiák Intenzív technológiák Extenzív technológiák Eleveniszapos eljárások Hagyományos SBR Oxidációs árok Stb.. Fixfilmes eljárások Csepegtető testek Merülő-tárcsás Bioszűrők Szárazföldi rendszerek Szikkasztás Talajszűrés (lassú szűrés) Szennyvíz-öntözés Kavics és homokszűrők (gyors szűrés) Gyökérzónás szennyvíztisztítás Vízi rendszerek Szennyvíztisztító tavak Úszó v. lebegő vízi növényes Felszíni átfolyású wetlandek Csörgedeztetés

Szárazföldi rendszerek Szikkasztás Szennyvíz-öntözés (irrigation) Talajszűrés (slow rate infiltration) Gyors homokszűrés (rapid infiltration) Gyökérmezős szennyvíztisztítás (root zone system, subsurface flow wetland)

Vízi rendszerek Tavak, lagúnák (pond, lagoon) anaerob fakultatív (aerob-anaerob) aerob levegőztetett halastavak Úszó v. lebegő vízinövényes (floating plant system) Nádastó (free water surface wetland) Csörgedeztetés (overland flow)

Természetes szennyvíztisztítási rendszerek Előnyök: környezetbarát alacsony építési, működtetési és fenntartási költség alacsony energiaigény működtetés különleges szakképzetséget nem igényel szélsőséges üzemelési körülmények között is működtethető más célokra nem használható területeken is kialakítható esztétikus diffúz szennyeződéseket is képes kezelni tájba illeszthető

Természetes szennyvíztisztítási rendszerek Hátrányok: nagy területigény (hosszú tartózkodási idő) speciális követelmények (topográfia, talajtípus) Általában alacsonyabb szennyezőanyag eltávolítási hatékonyság hatásfok szezonális változása beüzemelés hosszadalmas lehet építési hibák nem derülnek ki azonnal

Rövid kronológia Kichkuth 1977: „root-zone method” → a természet-közeli eljárások „újra felfedezése”. 80-as években Nyugat-Európában és az USA-ban nagyszámú természet-közeli telep épül. 90-es években kezdenek kialakulni a tervezési irányelvek. Javul az elfolyó vízminőség és a rendszerek stabilitása. Napjaink: még mindig nagyon sok a kutatandó feladat. Jól működő, kiforrott modellek nem állnak a rendelkezésre. Problémák: Nagyszámú publikáció összehasonlíthatósága Jelentős klimatikus függőség Nagyobb mértékű stochasztikus jelleg mint az extenzív technológiák esetében

Alkalmazási terület ipari és mezőgazdasági szennyvizek tisztítása kommunális szennyvizek tisztítása csapadékvizek tisztítása vizek nehézfém tartalmának csökkentése hulladéklerakók csurgalékvizének tisztítása TFH tisztítása hígtrágya kezelés rekultiváció nem pontszerű (diffúz) szennyezések mérséklése vízminőség-védelem iszapkezelés stb...

Extenzív és intenzív technológiák összehasonlítása   Intenzív technológiák Extenzív technológiák Gazdaságos lakos egyenérték terhelés bármilyen alacsony (max. 2-5 ezer fő) Beruházási költség azonos vagy magasabb azonos vagy alacsonyabb Üzemeltetési költség magas alacsony Keletkező iszap mennyisége magasabb alacsonyabb Szag emisszió minimális Energia és vegyszerigény Kezelőszemélyzet igény Felhazsnált mesterséges anyagok mennyisége Zajártalom Évszakonkénti üzembiztonság Területigény Átlagos leválasztási szerves anyag leválasztási hatásfokok Átlagos leválasztási növányi tápanyag anyag leválasztási hatásfokok Hidraulikai ingadozásokra való érzékenység Szerves anyag terhelés ingadozásra való érzékenység Esztétikai szempontok azonos vagy kedvezőtlenebb azonos vagy kedvezőbb Az elfolyó szennyvíz minőségi ingadozásának mértéke azonos vagy kisebb mértékű azonos vagy nagyobb mértékű

Alkalmazás lehetőségei és korlátai hazánkban szennyvíztisztítási területen Korszerű közműpótlóként Települési vagy ipari illetve mezőgazdasági szennyvíztisztítóban második fokozatú tisztításként csak az alábbi korlátozások esetén alkalmazható: A település lakos száma 2000 fő alatti, különösen javasolt vizsgálni a 600 fő alatti településeknél A befogadó általános vízminőség-védelmi kategóriájú (amennyiben a befogadó élővíz) A befogadó nem nitrát-érzékeny terület vagy nem vízbázis-védelmi terület (amennyiben a befogadó a talaj és talajvíz) Olcsón vagy ingyen (önkormányzati tulajdonban) áll rendelkezésre, a szennyvíztisztító telep építésére alkalmas terület Intenzív technológiájú telepek utótisztítójaként Egyéb esetekben egyéni vizsgálat tárgyát képezi az alkalmazhatóság!

Lassú beszivárogtatás (talajszűrés) A szennyvizet növényzettel borított területre vezetik Tisztítás a víz talajon történő átszivárgása közben Hidraulikai terhelés 400-5500 mm/év (1-15 mm/nap) Előnyei: Az alkalmas talajok széles skálája Talajvíz visszapótlás Olcsó és egyszerű üzemeltetés  Hátrányai: A többi szárazföldi módszernél nagyobb területigény (az alacsony terhelések miatt) Talaj bakteriális elszennyeződése Talajvíz szennyeződhet - drénhálózat Szikesedés Legalább mechanikai előkezelés szükséges. A talajvízkészlet veszélyeztetettségének mértéke alapján kell az előkezelési módot meghatározni.

Lassú beszivárogtatás Szennyvíz elosztása felszíni árkos permetező technika

Lassú beszivárogtatás Szennyezőanyag-eltávolítási mechanizmusok Lebegőanyag: a talaj általi szűrés Nitrogén: növényi felvétel, ammónia volatilizáció, nitrifikáció/denitrifikáció Ammónium-ion: talajrészecskékhez kötődhetnek, ahol mikroorganizmusok nitrifikálják Foszfor: adszorpció, kiülepedés, növényi felvétel, ha a növényzet betakarítását rendszeresen végzik

Szennyvíz öntözés (talajöntözés) Szennyvízöntözés = lassú beszivárogtatás egy speciális fajtája Fő cél a növényzet (valamilyen haszonnövény) vízzel és tápanyaggal való ellátása Hazai gyakorlat: nyárfás vagy fűzes ültetvények öntözése Gyakran használt eljárás a délebbi országokban (víz helyben tartása)

Magyarországi gyakorlat Nyárfás öntözés Magyarországi gyakorlat Árkos elosztás Drénhálózat!

Szennyvíz öntözés

Szennyvíz öntözés Előnyei: Hátrányok és korlátozó tényezők: Alternatív vízforrás (vizek helyben tartása) A tisztítási eljárás kombinálása a termeléssel A haszonnövények ellátása vízzel és tápanyaggal – pl. fatermelés Az adott terület mezőgazdasági értékéknek növelése A műtrágya szükséglet csökkentése Olcsó és egyszerű üzemeltetés Kimagasló P eltávolítás   Hátrányok és korlátozó tényezők: Az öntözött növényekre mérgező hatású összetevők előzetes eltávolítása szükséges Szigorú egészségügyi és környezeti szabályozások a lehetséges szennyeződésekre és mérgező összetevőkre Talaj bakteriális elszennyeződése Talajvíz szennyeződhet - drénhálózat Szikesedés Legalább mechanikai előkezelés szükséges. A talajvízkészlet veszélyeztetettségének mértéke alapján kell az előkezelési módot meghatározni.

Gyors homokszűrés Szennyvizet egy talajjal kitöltött földmedencébe engedik A szennyvíz a talajon való átszivárgás során tisztul meg A lassú beszivárogtatástól elsősorban a hidraulikai terhelés mértékében különbözik (15-450 mm/nap) – kisebb területigény Talaj szemcseeloszlása fontos Legjobb talajok a viszonylag durva textúrájúak (agyagos iszapok, iszapos homokok) Növényzet nincs - terhelés túl magas ahhoz, hogy a tápanyagfelvételnek jelentős hatása lehessen az eltávolításban Rendszerint utótisztító, vagy mechanikailag előtisztított szennyvíz tisztítására használják

Gyors homokszűrési technológia (1)

Gyors homokszűrési technológia (2)

Medence keresztmetszete

Homok és kavics filterek

Gyors homokszűrés Nitrogéneltávolítás: nitrifikáció/denitrifikáció 1-3 nap elárasztás, 5-10 nap száradás  a talaj felső rétegében a nitrifikációhoz szükséges aerob körülmények visszaállhatnak A foszfor eltávolítása a talajszemcsékhez való adszorpció eredménye (Fe tartalmú töltet).

Gyökérmezős szennyvíztisztítás Szigetelt medence vagy csatorna, amelyet porózus anyaggal töltenek ki Ebben vízi-mocsári növényzet nő A víz szintje megfelelő működés esetén a felszín alatt marad Az áramlás iránya vízszintes vagy függőleges lehet

Gyökérmezős szennyvíztisztítás A szennyvíz a rizómákkal sűrűn átszőtt talajon történő átfolyás során tisztul meg A növényi tápanyagok eltávolítása növényi felvétel, talajszemcsékhez kötődés és biológiai folyamatok során megy végbe A szervesanyagok eltávolításában biológiai folyamatok vesznek részt, míg a lebegőanyagokéban a szűrés

Gyökérzónás szennyvíztisztítás Függőleges átfolyású műtárgy: Vízszintes átfolyású műtárgy:

Vízszintes átfolyású rendszer

Vízszintes átfolyású rendszer

Felülnézet

Gyökérmezős szennyvíztisztítás

Előnyök és hátrányok Előnyök Hátrányok Szag-emisszió mentes Minimális iszapkezelési költség Minimális felügyeleti és élőmunka igény az üzemeltetésnél Alacsony évszakfüggőség (nitrogén-formák) Esztétikai megjelenés Hátrányok Nagy területigény Relatíve magas beruházási költség Maximált élettartam Eltömődési érzékenység Gyenge növényi tápanyag eltávolítási hatékonyság

A gyökérzónás technológia nemzetközi, illetve hazai megítélése Első külföldi telepek a 70-es évek végén épültek. Első hazai telep 1991-ben épült Tóalmás községben. Jelenleg kb. 20-25 db működő gyökérzónás telep van hazánkban. Népszerű eljárás szerte a világon, különösen az USA-ban, Nyugat- és Észak-Európában, Ausztráliában. Hazánkban népszerűtlen eljárás, melynek okai: A befogadói határértékrendszer alakulása napjainkig A hazai szennyvíztisztítási – csatornázási pályázatok rendszere A nem megfelelő tervezési gyakorlat és a kevés hazai tapasztalat A hazánkban üzemelő rendszerek negatív üzemelési tapasztalatai

Töltet Töltet mélysége: 0,5 - 1,5 m Minimális áteresztő képesség: k=10-4 m/s Lehetséges anyagok: Frakcionált kavics Homok Talaj Speciális anyagok pl. agyagpala, zeolit, stb.. Ezek keverékei Több elkülönített réteg is beépíthető

Növényzet Alkalmazott növények lehetnek bármely makrofita fajok (pl: nád, sás, stb..) Kedvelje a helyi éghajlatot A gyökérzete jól szője át a töltetet Egyszerű legyen a telepítése Alacsony legyen a gondozási igénye Telepítési sűrűség: ~ 3 - 20 db/m2

Növények szerepe Oxigént juttat a víz fázisba Stabilizálja a töltet felszínt Mérsékli a függőleges átfolyású rendszerek eltömődési hajlandóságát Mérsékli a fagyveszélyt és a szennyvíz kihülését Nagy felületet biztosít a mikroorganizmusok megtelepedéséhez Növényi tápanyagokat fogyaszt a szennyvízből Életteret biztosít magasabb rendű élőlények számára Javítja a telep esztétikai megjelenését Kedvező mikroklímát biztosít a mikroorganizmusoknak Javítja a műtárgyban kialakuló biofilm tömörségét Tévhit: javítja a talajtöltetű hosszanti átfolyású műtárgyak áteresztő képességét !!!!!!!!!!!!!!!!!!!!!

Gyökérzettel átszőtt töltet

Eltömődési folyamatok Főbb okok: Biofilm képződés Lebegőanyagok mechanikai blokkolódása Kémiai kicsapódások a töltetben A probléma mérséklési módjai: Jó mechanikai előkezelés Magas áteresztőképességű töltet választása Nagy bevezetési felület kialakítása Szakaszos üzem

Gyökérzónás műtárgyak tervezési kritériumai I. A szükséges mezőfelület: min. mezőfelület 5 m2/LEÉ tényleges felület a konkrét terhelésektől függően (akár 20 m2/LE is lehet!) Gazdaságos telepítés felső határa: ~2000 LEÉ hidraulikai-terhelés: 200-250 m3/nap szervesanyag-terhelés: 100-140 kgBOI5/nap, 200-280 kgKOI/nap összes nitrogén-terhelés: 20-24 kgÖN/nap összes foszfor-terhelés: 5-7 kgÖP/nap

Gyökérzónás műtárgyak tervezési kritériumai II. Fajlagos hidraulikai terhelés: Függőleges átfolyású műtárgy: 60 mm/nap Vízszintes átfolyású műtárgy: 40 mm/nap Kombinált műtárgyak esetén egyedi elbírálás Töltetanyag: Függőleges átfolyású műtárgy: homok vagy homokos kavics finomfrakciók nélkül Vízszintes átfolyású műtárgy: frakcionált kavics min. szemátmérő 4 mm

Gyökérzónás műtárgyak tervezési kritériumai III. Maximális szervesanyag-terhelés: 20-25 gKOI/m2,nap Maximális LA-terhelés: 5-7 gLA/m2,nap Függőleges átfolyású műtárgyaknál a minimális rávezetési periódus: 3 óra (pufferolás)

Függőleges és vízszintes átfolyású rendszerek összehasonlítása

A kombinált (multistage) rendszerek Nemzetközi tapasztalatok: 95-99%-os szerves anyag eltávolítás mellett jól működnek a nitrifikációs- denitrifikációs folyamatok (amerikai tapasztalatok) Az elfolyó BOI5 koncentráció 20 mg/l alatti télen-nyáron (belga tapasztalatok) Nyári időszakban tartható a 10 mg/l alatti elfolyó NH4-N koncentráció (német tapasztalatok) A nitrifikálódott nitrogén 80%-a denitrifkikálódik a rendszerben (német tapasztalatok) Platzer mérési eredményei szerint a maximális fajlagos ÖN eltávolítási teljesítmény 6.5 gÖN/m2

Nagyobb flexibilitású rendszerek szempontjai A rendszer jól illeszkedjen a nyers szennyvíz minőség és az elfolyó szennyvízzel szemben támasztott befogadói paraméterek által megszabott tisztítási feladathoz. A technológia minél flexibilisebb legyen, hogy a tervezési bizonytalanságokból eredő esetleges emissziós problémák üzemelési-rend váltással a próbaüzem során megszüntethetők legyenek. A téli és a nyári üzemre külön üzemeltetési alternatíva álljon rendelkezésre. A sorba illesztett technológiák egymás hátrányait küszöböljék ki vagy csökkentsék.

Csörgedeztetés A szennyvíz egy megfelelő lejtésű, fűvel borított, teraszosított lejtőn folyik le (lépcsős vagy teraszos kialakítás) Tisztítási folyamatok: Kiülepedés Szűrés Adszorpció Mikrobiális átalakítás Lebontás

Csörgedeztetés

Csörgedeztetés Talaj áteresztőképessége: <5 mm/h Finom szerkezetű agyag, agyagos vályog Növényzet (fűféleség) biztosít közeget a tisztításban szerepet játszó mikroorganizmusoknak, akadályozza az eróziót és fölvesz növényi tápanyagokat Periodicitás Max. hidraulikai terhelés: 7,5 cm/nap Magas oxigén beviteli hatékonyság Gyakran felszíni átfolyású wetlandekkel kombinálval

Szennyvíztisztító tavak (felszíni átfolyású wetlandek) csoportosítása Növényi dominancia Makrofita dominanciájú tavak Nádas tavak (nád, sás, káka, hínár, vízitök, stb..) Úszó vízinövényes rendszerek (pl. Lemna) Vegyes rendszerek Fitoplankton dominanciájú tavak Oxigénellátottság Anaerob Fakultatív Aerob Hidraulikai kialakítás Tavak Lagunák Levegőztetési mód Természetes Mesterséges

Tavas rendszerek előnyei-hátrányai Előnyök Magas tartózkodási idő –összetett lebontási folyamatok Egyszerű és olcsó üzemeltetés Alacsony kivitelezési költség Jól tűri a hidraulikai és szerves anyag terhelés ingadozásokat Hátrányok Nagy helyigény Téli vízlehűlés hatásai

Tavak, lagúnák Egy vagy több nyílt vízfelszínű, szigetelt medencéből állnak Miközben a szennyvíz átfolyik rajtuk, a szennyezőanyagokat mikroorganizmusok lebontják

Anaerob tavak Olyan magas szerves terhelést kapnak, hogy a víztérben aerob zóna nem tud kialakulni Átlagos mélységük 2,5-5 m, a szennyvíz tartózkodási ideje 20-50 nap A lejátszódó fő biológiai folyamatok: savképződés és anaerob bontás

Fakultatív tavak 1,2-1,8 m mélyek, felső rétegük aerob, míg az alsó rétegekben anaerob viszonyok uralkodnak A szennyvíz tartózkodási ideje általában 7-120 nap A fakultatív működés kulcsa a felszíni algák által termelt oxigén és a felső réteg átlevegőzése a felette lévő légrétegből Az oxigént a felső vízréteg aerob baktériumai használják föl a szervesanyag lebontásához

Aerob tavak Teljes mélységükben tartalmaznak oldott oxigént (algák fotoszintézise, felszín átlevegőzése) Sekélyek (30-60 cm mélység) Rövid tartózkodási idő : 2-6 nap

Fitoplankton dominanciájú tavak

Fitoplankton dominanciájú tavak

Fitoplankton dominanciájú tavak

Fitoplankton dominanciájú tavak Célszerű több tó sorba kapcsolása Recirkuláció szerepe: Oldott oxigén bevitel a rendszer elejém Sejt visszatáplálás Elfolyó algakoncentráció problematikája Téli lehűlés problematikája

Úszó – lebegő vízinövényes rendszer Vízi jácint (Eichhornia crassipes), a békalencse (Lemna sp., Spirodela sp., and Wolffia sp.) A békalencse fajok kisméretű, néhány mm nagyságú levélkével és 1 cm-nél rövidebb gyökérrel rendelkeznek A vízi jácint egy édesvízi évelő növény, lekerekített, felfelé álló, fényes zöld levelekkel és csúcsos virágzattal, a gyökere természetes körülmények között 30 cm hosszú  

Úszó vagy lebegő növényes tisztítás növények szerepe: vízfelszín beterítése - alganövekedés megakadályozása a kiülepedést is elősegítik vízi jácint gyökérzetén mikroorganizmusok tudnak megtelepedni, valamint oxigént juttat a vízbe a gyökerén keresztül

Lemnás tó

Úszó vízinövényes szennyvíztisztításra alkalmas területek

Nádastó (makrofita dominanciájú tó)

Nádastó A víz szintje a talajszint felett helyezkedik el Vízmélység: 10 - 80 cm A szennyezőanyag-eltávolítási folyamatok nagy része a vízben zajlik le, a talajnak kisebb a szerepe A növényzet víz felett lévő szára, levelei gátolják a fény bejutását a vízbe, így szabályozva az alga növekedést.

Nádastó Általában aerob, nagy szerves anyag terhelés esetén fakultatív rendszer Természetes levegőztetésű rendszer Általában szigetelt földmedencében kerül kialakításra Főbb tisztítási folyamatok: Biokémiai lebontás Adszorpció Ülepedés Magas tartózkodási idő (10 - 100 nap) Nagy helyigény A rendszer jól tűri a hidraulikai és szerves anyag terhelés ingadozásokat Magyarországi éghajlati viszonyok esetén probléma a téli tisztítási hatékonyság visszaesés (mértéke vitatott) Elfolyó víz algakoncentrációja alacsonyan tartható

Nádastó Az elhaló növényi részek a téli hónapok alatt jó hőszigetelést nyújtanak, csökkentve a szél és a konvekció által eltávozó hőmennyiséget. A növények oxigéntranszportja a gyökértérbe szintén fontos, bár a fő oxigénforrás a felszíni átszellőzés.

Nádastó

Nádastó

Néhány nádas tavas szennyvíztisztító telep elhelyezkedése Észak-Amerikában

Megjegyzés: Zárójelben az átlagok Működési jellemzők 0,14-1,6 Öntözés 0,6-3,0 303-18925 Talajszűrés 23-56 303-48000 Gyors homok- Szűrés 5,1-11,7 (8,2) 1,4-22,3 (7) 337-4147 Nádastó 19,1 (3,1) 2,4 (10) 49-2248 Úszó vízi- Növényes 0,9-23,0 (5) 0,87-26,0 (7,8) 1-200 Gyökér- mezős FAJLAGOS FELÜLET m2/lakos HIDRAULIKUS cm/nap KAPACITÁS m3/nap TÍPUS Megjegyzés: Zárójelben az átlagok

Eltávolítási hatásfok (%) 69 93 80 Gyors homokszűrés 15-81 (50) 12-65 60-93 (80) 51-89 Nádastó 16-67 14-72 (40) 20-95 10-94 Úszó vízinövényes 11-94 10-88 60-98 51-95 Gyökérmezős Összes N P Lebegő- anyag BOI5 Típus Megjegyzés: Zárójelben az átlagok

Közegészségügyi jellemzők ELTÁVOLÍTÁS (LOG10 EGYSÉG) 1-4 1-6 Fertőtlenítés Stabilizációs tó 1-2 Lagúna 0-1 0-2 Eleveniszapos rendszer Ülepítés Vírus Baktérium Típus

Gyökérzónás telepek BOI eltávolítási hatásfoka a hidraulikus terhelés függvényében

Gyökérzónás telepek TP eltávolítási hatásfoka a hidraulikus terhelés függvényében

Gyökérzónás telepek TN eltávolítási hatásfoka a hidraulikus terhelés függvényében

A stabilizációs tó és az eleveniszapos rendszer fenntartási és működési költségének összehasonlítása

A stabilitációs tó és az eleveniszapos rendszer beruházási költségének összehasonlítása

Szügyi szennyvíztelep, eltávolítási hatásfok, % (1) 100 98 92 95 MAXIMUM 44 16 - 37 19 MINIMUM 20 42 15 18 38 SZÓRÁS 86 81 23 82 78 25 ÁTLAG Telep Gyökér-mező Ülepítő BOI, % KOI, %

Szügyi szennyvíztelep, eltávolítási hatásfok, % (2) 100 97 84 62 MAXIMUM - MINIMUM 34 41 36 31 33 SZÓRÁS 46 28 9 50 11 ÁTLAG Telep Gyökér-mező Ülepítő NH4-N, % Összes nitrogén, %

Szügyi szennyvíztelep, eltávolítási hatásfok, % (3) 100 99 91 92 36 MAXIMUM 3 - 26 5 MINIMUM 31 30 64 20 25 40 SZÓRÁS 71 70 76 67 ÁTLAG Telep Gyökér-mező Ülepítő PO4-P, % Összes foszfor, %

Össz.baktériumszám, 37°C, % Össz.baktériumszám, 20C , % Szügyi szennyvíztelep, eltávolítási hatásfok, % (4) 100 99 MAXIMUM 87 80 50 74 75 - MINIMUM 3 5 39 6 7 36 SZÓRÁS 98 95 97 94 76 ÁTLAG Telep Gyökér-mező Ülepítő Össz.baktériumszám, 37°C, % Össz.baktériumszám, 20C , %