Nagyfeszültségű kapcslókészülékek

Slides:



Advertisements
Hasonló előadás
Gyakorló feladatsor – 2013/2014.
Advertisements

Matrix-modul (konténer) biogáz üzemek
Csík Zoltán Elektrikus T
Kapcsolókészülékek Potyka Bálint.
Csík Zoltán Elektrikus T
A FLUIDUMOK SZÁLLÍTÁSA
Védelmi Alapkapcsolások
Kábelek Készítette: Mecser Dávid. A kábel: A kábel olyan, villamos energia átvitelére alkalmas szigetelőanyaggal körülvett, víz és mechanikai behatások.
Transzformátorok védelmei
VER Villamos Berendezések
Hálózatok osztályozása csillagpontkezelés alapján
Elektromos alapismeretek
,,Az élet forrása”.
Energiaellátás: Tárolás
Energiaellátás: Előállítás
Szigetelések igénybevétele Tamus Zoltán Ádám
Védekezés az elektrosztatikus feltöltődés káros hatásai ellen
Az elektrosztatikus feltöltődés keletkezése
VIVEM111 Váltakozó áramú rendszerek I. (3+0+0 f 4k) 2013 készítette Dr
Az elektrosztatikus feltöltődés keletkezése
VER Villamos Berendezések
Készítette: Paragi Dénes
KAPCSOLÓKÉSZÜLÉKEK Megszakítók Készítette: Orbán Tamás.
Elektrotechnika előadás Dr. Hodossy László 2006.
Különleges eljárások.
HIDRODINAMIKAI MŰVELETEK
Beavatkozószerv Készítette: Varga István VEGYÉSZETI-ÉLELMISZERIPARI KÖZÉPISKOLA CSÓKA
VEGYÉSZETI-ÉLELMISZERIPARI KÖZÉPISKOLA CSÓKA
Kismegszakító kiválasztása
Csík Zoltán Elektrikus T
Túláramvédelem.
Csík Zoltán Elektrikus T GYŰJTŐSÍNRENDSZEREK.
Transzformátorok védelmei
Áramvédő kapcsolók alkalmazása
Műszaki hiba megjelenési formái.Kopás.Korrózió.Törés ,repedés
Transzformátorok.
A VILLAMOSSÁG BIZTONSÁGTECHNIKÁJA
Hagyományos energiaforrások és az atomenergia
 Védelmek és automatikák  3. előadás.
Az elektromágnes és alkalmazása
Magyarországi vezetékes szállítás fő vonalai
Színesfémek és ötvözeteik.
A SZÍVÓOLDALI PRESSZOSZTÁT - Ismertesse a feladatát a hűtőrendszerben!
A nitrogén és oxidjai 8. osztály.
Ideális folyadékok időálló áramlása
Zsugorkötés.
A villamosenergia-rendszer alapfogalmai
2.6 Szakaszolók 2.7 megszakítók- és szakaszolómeghajtások
Villamos hálózatok védelmei Lapsánszky Balázs 2/14.E.
Kapcsolók, kontaktorok és motorvédő-kapcsolók
Készítette: Palla Péter
Üzemzavarok fajtái (Zárlatok és a Túlterhelés)
Készítette: Szabó László
Üzemzavari és üzemviteli automatikák
A védelmek összefüggő rendszerének kialakítása
Aszinkron gépek.
INtelligens KADCpcsoló család
Szervopneumatika.
Hőszivattyú.
Nagy hatékonyságú folyadékkromatográfia
Aknaajtók Szerkezet és biztonság. Aknaajtók.
Csővezetékek.
Villamos energia rendszer
1 Kémia Atomi halmazok Balthazár Zsolt Apor Vilmos Katolikus Főiskola.
Levegőellátás - a levegő tulajdonságai, a sűrített levegő előállítása,
Lobbanáspontok Definíció : – A lobbanáspont az a legalacsonyabb hőmérséklet, 760 mm Hg nyomásra korrigálva, amelyen gyújtóforrás alkalmazása az anyagminta.
Készítette: Sovák Miklós Konzulens: Dr. Kiss Endre
Részösszefoglalás Gyakorlás.
Villamos kötések,érintkezők, kapcsolók
Szivattyúk fajtái 1. Dugattyús szivattyú - nem egyenletesen szállít,
Előadás másolata:

Nagyfeszültségű kapcslókészülékek kültéri vákum megszakító vákum megszakító vasúti megszakító Csík Zoltán Elektrikus T.06305375989 E-mail:csicsi68@gmal.com kültéri megszakító

Légnyomásos megszakító Kis olajterű (olajszegény) megszakítók EIB licence alapján gyártott OTKF típusú egykamrás megszakító OR típusú egységkamrás megszakító SF6 szigetelésű megszakítók Vákuummegszakítók

Légnyomásos megszakító Oltóközegük nagynyomású levegő. Hátránya, hogy a sűrített levegőhöz kompresszorra és megfelelő cső-vezetékhálózatra (vagy megszakítónkét külön kompresszorra) van szükség. A megszakító elvi felépítése az ábrán látható. Kikapcsoláskor az ív oltását és az érintkezők mozgatását, nyitott helyzetben a villamos szilárdságot a nagynyomású levegő biztosítja, a bekapcsolást rugók végzik.

Kisolajterű (olajszegény) megszakítók Szigetelő- és oltóközegük az olaj. Az oltókamrában keletkező ív olajgőzt ill, bomlási gázt fejleszt, ami nagy nyomást és erőteljes olajáramlást létesít. A nyomás az ívet összeszorítja, a gőzfejlődés energiát von el, az olaj áramlása az érintkezőket hűti és az ívcsatornát kiöblíti. Az érintkezők szétválása után az áram nullaátmenetét követően az újragyulladást a keletkezett gáz nagy nyomása akadályozza meg. A megszakítási teljesítmény az oltókamrában megengedhető nyomás függvénye. Az ívközegbe fújt gázt vagy gőzt általában még irányítják is, e szerint megkülönböztetünk hosszanti-, kereszt- és vegyes fúvású rendszert.

OTKF típusú egykamrás megszakító A közép-és a nagyfeszültségű (120 kV-os) hálózatokon alkalmazzák. Kisolajterű, hosszsugaras oltókamrájú. Szabadtéri kivitelben készítik. Egy- és háromfázisú gyors visszakapcsolásra alkalmas. Megszakításkor káros túlfeszültséget nem okoz. A hajtás és a megszakító mechanikai kapcsolatban vannak. Bekapcsolás közben felhúzza a megszakítóban lévő kikapcsoló rugókat. A bekapcsolást és a bekapcsolt helyzet reteszelését a hajtás végzi, a kikapcsoláskor viszont csak kioldja a megszakítóban levő kikapcsoló rugók kilincsművét. A ki- és bekapcsolás a hajtásban levő "ki" és "be" tekercse működtetésével indul meg.

OR típusú egységkamrás megszakító Kifejlesztését a zárlati teljesítmények növekedése és a hálózatok feszültségszintjének emelkedése tette szükségessé. Egy egységkamra 72,5 kV-on 3000 MVA lekapcsolására alkalmas. A 120 kV-os hálózatokon ebből kettőt sorba kötve megfelelő névleges feszültségű, és 6000 MVA megszakítási teljesítményű megszakítót lehet kialakítani. Nagyobb feszültségeken való alkalmazása is lehetséges, ha több egységkamrát építenek sorba és több tartószigetelőre helyezik. A tartószigetelővel összeszerelt egységkamrás elem (két egységkamra) neve: oszlop.

SF6 szigetelésű megszakítók A tiszta SF6 színtelen, szagtalan, nem mérgező és nem gyúlékony gáz. 1500C-ig kémiailag közömbös. A levegő hiánya következtében az érintkezők nem oxidálódnak. A megszakítás gyors, az érintkezők fogyása kicsi. A gáz villamos szilárdsága 1,5-3 bar nyomáson kb. az olaj villamos szilárdságával egyezik meg E=120 kV/cm. A gázáramlás előállításának módjától függően egy- és kétnyomásos megszakítókat különböztethetünk meg. A kétnyomásos megszakítóknál két, különböző nyomású SF6-gázt hasznának. A kisnyomású gáztartályban több oltókamra egységet helyeznek el. A nagynyomású tárolótartályból mechanikailag működtetett szelepeken keresztül jut a gázáram az oltótérbe kikapcsoláskor. Záráskor nincs gázáramlás. A nagynyomású gáz lecsapódásának megelőzésére 10 °C alatt a tartályt fűteni kell. A működtetés földpotenciálon lévő légnyomásos hajtással történik.

Vákuummegszakítók A vákuum a kapcsolókészülékek számára kiváló szigetelő és ívoltó közeg. Minimális az ionizálható gázmolekulák száma. Erősáramú technikában a vákuum-ívoltókamrák nyomása 10-2…10-6 Pa. Nehéz megvalósítani a szükséges vákuumot, mert az anyagok felületén molekula vastagságú gázréteg található. Vákuumban az ív fenntartásához rendelkezésre álló közeg: a katódfoltból közvetlenül elpárolgó fém a teljes érintkező felületről elpárolgó fém a vákuumban levő szilárd anyagok felületén megkötött molekuláris gázréteg. A nagy villamos szilárdságú vákuum és a rendkívül kicsi elektródatávolság miatt gyors deionizáció ideális kapcsolószerkezet kialakítását teszi lehetővé. Az érintkezők távolítása, nyitása csekély, pl. 11…15 kV-os kamránál 8-12 mm. A kedvező ívoltási tulajdonság miatt kis áramnál áramlevágás következhet be, ezért az érintkezők anyagába alacsony olvadáspontú ötvözőket visznek (réz-bizmut, réz-króm).

A vákuumtérben levő megszakító érintkezőkben az áramutakat úgy alakítják ki, hogy a keletkező ívre jelentékeny mágneses erő hasson. Ezt az érintkezők behasításával érik el. A mágneses erők hatására az ív az érintkező homlokán körbe fut, így talppontja nem tud egy helyben állva maradni és mély krátereket égetni az érintkező felületén.