Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.

Slides:



Advertisements
Hasonló előadás
Az anyagszerkezet alapjai
Advertisements

Készítette: Bráz Viktória
Radioaktivitás Természetes radioaktív sugárzások
Radioaktivitás Henry Becquerel: egy véletlen során felfedezi a radioaktivitás jelenségét 1895-ben. Pierre és Marie Curie: 8 tonna uránszurokércből 0,1.
Gazdálkodási modul Gazdaságtudományi ismeretek III. Marketing KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Kémia Hornyák Anett Neptun-kód: XIGGLI
Az atomok Kémiai szempontból tovább nem osztható részecskék Elemi részecskékből állnak (p, n, e) Elektromosan semlegesek Atommagból és elektronokból.
Radioaktivitás, izotópok
Izotóp-hidrogeokémia
Atommag.
Tartalom Az atom fogalma, felépítése Az atom elektronszerkezete
Tartalom Az atom fogalma, felépítése Az atom elektronszerkezete
Készítette: Borsodi Eszter Témakör: Kémia I.
KÉMIAI ALAPFOGALMAK.
A fémek és ötvözetek kristályosodása, átalakulása
Kémiai kötések Molekulák
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
1 Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Gazdálkodási modul Gazdaságtudományi ismeretek I. Üzemtan
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Az elemek periódusos rendszere
Az atommag.
Tartalom Az atom felépítése Az atom elektronszerkezete
Az elemek periódusos (= ismétlődő) rendszere
Atomenergia.
Mit tudunk már az anyagok elektromos tulajdonságairól
A stabil izotópok összetartozó neutron- és protonszáma
Keszitette: Boda Eniko es Molnar Eniko
Kovalens kötés különböző atomok között.
Az atommag 7. Osztály Tk
Az oxigén 8. osztály.
Az atommag szerkezete és mesterséges átalakítása
Az anyagok részecskeszerkezete
Elektronhéjak: L héjon: 8 elektron M héjon: 18 elektron
Az atom felépítése.
Radioaktivitás II. Bomlási sorok.
Alkalmazott kémia Általános-, szervetlen- és szerves kémiai alapismeretek áttekintése után olyan ismeretek nyújtása amelyek a készség és gyakorlat szintjén.
Készitették: Dimény Leonóra Nemes Izabella Sütő Ruth Szigyártó Timea II.csoport.
Környezetkémia-környezetfizika
Az atom sugárzásának kiváltó oka
A radioaktivitás és a mikrorészecskék felfedezése
A kvantum rendszer.
Globális környezeti problémák és fenntartható fejlődés modul
Természetes radioaktív sugárzás
Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Az atommag alapvető tulajdonságai
1 Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
RAdiOaktivitás, nukleáris energia
Elektronszerkezet. 1.Mi az atom két fő része? 2.Milyen elemi részecskék vannak az atommagban? 3.Milyen töltésű a proton? 4.Mi a jele? 5.Mennyi a tömege?
Általános kémia előadás Gyógyszertári asszisztens képzés
Az anyagmennyiség. Az anyagok rendkívül kicsi kémiai részecskékből épülnek fel. Több milliárd részecske.
A hidrogén. 1.Keresd meg a periódusos rendszerben a hidrogént! Hol a helye? Hány protonja, neutronja, elektronja van az atomjainak? Hány elektronhéja.
Nukleáris medicina Lényege: A radioaktív izotópok diagnosztikai és therápiás célból való felhasználása.
Az atomok szerkezete.
Kovalens kötés I. elemmolekulák. 1.Hány vegyérték elektronjuk van a nemesgázoknak? 2.Miért nemesgáz a nevük? 3.Sorold fel a nemfémes elemeket főcsoport.
AZ ATOM FELÉPÍTÉSE.
Szakmai kémia a 13. GL osztály részére 2016/2017.
PERIÓDUSOS RENDSZER film.
Atomenergia.
A) hidrogénizotóp (proton)_____1H1 B) hidrogénizotóp (deutérium)__1H2
Ágotha Soma Általános és szerves kémia
Radioaktív lakótársunk, a radon
Termokémia.
Kémiai alapismeretek Ismétlés évfolyam.
Előadás másolata:

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul

3. Lecke Az atomok alkotói

Szén A szénnek (C) többféle módosulata található a természetben. A leggyakrabban előforduló módosulat a 12-es tömegszámú szén, amelynek az atommagjában 6 db proton és 6 db neutron található. C Rendszám (protonok száma) Tömegszám (protonok és neutronok számának összege)

Oxigén Az oxigén (O) rendszáma 8 és tömegszáma 16, ami azt jelenti, hogy az oxigén esetében is az atommagban ugyanannyi proton és ugyanannyi neutron található (8 db proton és 8 db neutron). O 16 8 Rendszám (protonok száma) Tömegszám (protonok és neutronok számának összege)

Minimálisan annyi neutron van az atommagban ahány proton, és kis tömegszámú elemek esetén a protonszám és a neutronszám megegyezik. Nagyobb protonszám (tehát nagyobb rendszám) esetén azonban több neutron szükséges a protonok közötti taszítóerő kompenzálásához. Tehát egy adott protonszám fölött a neutronok száma meghaladja a protonok számát. A nikkel (Ni) esetében például a neutronok száma 3-mal több, mint a protonok száma. Ennyivel több neutron szükséges a taszítóerő kompenzálásához. Ni Rendszám (protonok száma) Tömegszám (protonok és neutronok számának összege) A proton- és neutronszám viszonya Ni Rendszám (protonok száma) Tömegszám (protonok és neutronok számának összege)

Arany proton és Neutronszáma Az arany (Au) protonszáma 79, ehhez 158-as tömegszám tartozna, ha az atommagban a protonok és neutronok száma megegyezne. Ezzel szemben az arany tömegszáma 197, ami 39-cel több neutront jelent, mint az 1:1-es arányhoz tartozó tömegszám. Au Rendszám (protonok száma) Tömegszám (protonok és neutronok számának összege) A fentiekből jól látszik, hogy a nagyszámú proton taszítóhatását egyre több neutron kell, hogy kompenzálja.

Az utolsó stabil elem A protonok számát azonban nem lehet a végtelenségig növelni. Az utolsó olyan elem, amely még egyben tud maradni az uránium (U); atommagjában 92 proton található. Ez 54-gyel több neutront jelent mint amennyi az 1:1-es proton : neutron arányhoz tartozna. A természetben 92-nél nagyobb protonszámú stabil elem nem létezik, e fölött a neutronok már nem képesek stabilizálni a protonok taszító hatását. U Rendszám (protonok száma) Tömegszám (protonok és neutronok számának összege)

Izotópok Léteznek olyan elemek, amelyek többféle módosulatban megtalálhatóak a természetben; Egy adott elem első számú kémiai jellemzője a protonok száma, tehát ha két elemnél a protonok száma megegyezik, de a neutronok száma különböző, attól az még ugyanaz az elem! A szén protonszáma például 6. Általában a szén tömegszáma 12 (tehát az atommagban 6 proton és 6 neutron található), azonban a szénnek egyéb módosulata is előfordul. Ebben a módosulatban az atommagban ugyanúgy 6 proton található, azonban a protonok mellett 8 neutron van! A tömegszám így: 6+8=14. Mivel az elem első kémiai jellemzője a protonszám, így ez a kétféle szénmódosulat ugyanazt az elemet jelenti (mivel mindkét esetben ugyanannyi a protonszám). Az ilyen módosulatokat izotópoknak nevezzük. Az izotóp tehát az egy adott protonszámhoz tartozó különböző neutronszámú módosulat.

A H izotópjai H 1 1 D 2 1 A legismertebb, a már említett módosulat az 1-es tömegszámú módosulat. Ebben az esetben az atommagban a proton mellett nem található neutron: A deutérium (amely szintén hidrogén!) atommagja a proton mellett tartalmaz egy neutront is: A deutérium természetes körülmények között is létrejön. A trícium atommagja a proton mellett két neutront tartalmaz, így tömegszáma: 3. T 3 1

Fontos izotópok 17 8 O C 16 8 O 12 6 C 18 8 O Cl Cl Más elemek izotópjai: A már említett szén izotópok: Az oxigén izotópjai: A fent említett elemek esetében az egyik izotóp a meghatározó: a hidrogén esetében az 1-es tömegszámú izotóp, a szén esetében a 12-es tömegszámú izotóp, az oxigén esetében a 16-os tömegszámú izotópok a meghatározóak. (A periódusos rendszerben ezek az elemek ezekkel a tömegszámokkal szerepelnek). A klór esetén azonban nem ez a helyzet: kétféle izotóp egymással összehasonlítható arányban van jelen: arányuk körülbelül 1:3 – 1:4. A kétféle izotóp arányából következően a klór átlagos atomtömege: 35,5. (A periódusos rendszerben is ez a szám található mint tömegszám.)

Instabil atomok bomlása A Termodinamika II. főtétele szerint a természetben az energiacsökkenés felé, azaz az egyensúly kialakulása felé vezető folyamatok játszódnak le. Az instabil atommagok az energiacsökkenésre irányuló folyamatok következtében átalakulnak stabil izotópokká. Az átalakulás közben az energiát átadja a környezetének, hő illetve sugárzás formájában. Az instabil izotópok átalakulása során az atom energetikailag stabilabb állapotba kerül. Előfordul, hogy az instabil izotópból nem csupán egy átalakulás során lesz stabil izotóp; a stabil állapot eléréséhez akár 8-10 lépés is szükséges lehet. A legtöbb esetben valamilyen ólom módosulat a végső állomás, mert az ólomnak rendkívül stabil izotópjai vannak. Az ólommal ellentétben bizonyos elemek aránylag kis energiaközléssel instabil állapotba hozhatóak. Ilyen energiaközlésnek számít például a neutronokkal történő bombázás, amely hatására instabillá válnak az eredetileg stabil izotópok.

Radioaktivitás Radioaktivitásnak nevezzük az instabil izotópok átalakulását. A radioaktivitás lehet természetes és lehet mesterséges is. Természetes radioaktivitás a természetben megtalálható elemek instabil izotópjainak átalakulása. Erre példa a rádium, uránium, szén-14-es izotópjának átalakulása. A 224-es tömegszámú rádium izotóp radonra és héliumra bomlik el: Ra Rn 4 2 He C 7 N -1 ß + 0 A C-14-es izotóp átalakulása során a neutron átalakul protonná miközben egy elektront veszít. Az átalakulás során ß-sugárzás lép fel.

Kérdések a leckéhez A szén és oxigén szerkezete A proton- és neutronszám viszonya A H izotópjai Forrás: Dr. Licskó István, Laky Dóra (2003)

KÖSZÖNÖM FIGYELMÜKET!