A Dijkstra algoritmus.

Slides:



Advertisements
Hasonló előadás
A Floyd-Warshall algoritmus
Advertisements

Nevezetes algoritmusok
egy egyszerű példán keresztül
Készítette: Major Máté
Matematika II. 4. előadás Geodézia szakmérnöki szak 2010/2011. tanév Műszaki térinformatika ágazat tavaszi félév.
Készítette: Hanics Anikó. Az algoritmus ADT szintű leírása: A d[1..n] és P[1..n] tömböket, a korábban ismertetett módon, a távolság és a megelőző csúcs.
Dijkstra algoritmus Irányított gráfban.
Szélességi bejárás Párhuzamosítása.
Dijkstra algoritmus Baranyás Bence. Feladat Adott egy G=(V,E) élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges.
Gráfok szélességi bejárása
Gráf Szélességi bejárás
Készítette Schlezák Márton
Gazdaságmatematika 5. szeminárium.
Minimax és problémaredukció, egyszerű példák INCK431 Előadó: Dr. Nagy Benedek Norbert Gyakorlatvezető: Kovács Zita 2011/2012. II. félév A MESTERSÉGES INTELLIGENCIA.
Ág és korlát algoritmus
Prím algoritmus.
Dijkstra algoritmus. Kiválasszuk a legkisebb csúcsot, ez lesz a kezdőcsúcs, amit 0-val címkézünk és megjelöljük sárgaszínnel. Szomszédjai átcímkézése.
1 Györgyi Tamás – GYTNAAI.ELTE 2007 Április 03 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus Bellman-Ford Algoritmusa S a b d e
„Országos” feladat. Feladat: Egy tetszőleges, színes országokat tartalmazó térképen akar eljutni egy kommandós csapat egy országból egy másikba. Viszont.
Dijkstra algoritmus Algoritmusok és adatszerkezetek 2. Újvári Zsuzsanna.
Dijkstra algoritmusa Egy csúcsból a többibe vezető legkisebb költségű út megkeresése Az algoritmus működésének leírása és bemutatása LL.
Szélességi bejárás A szélességi bejárással egy irányított vagy irányítás nélküli véges gráfot járhatunk be a kezdőcsúcstól való távolságuk növekvő sorrendjében.
Gráf szélességi bejárása
Dijkstra algoritmus. Az algoritmus elve Kezdésnél a start csúcson kívül minden csúcs távolsága legyen ∞. (A start csúcs távolsága 0) Feltételes minimum.
Készítette: Lakos Péter.  Adott egy élsúlyozott, véges gráf  Negatív élsúlyokat nem tartalmaz  Lehet irányított vagy irányítatlan  Továbbá adott egy.
Készítette: Lakos Péter.  Adott egy irányított vagy irányítatlan, véges gráf.  Írjuk ki a csúcsokat egy kezdőcsúcstól való távolságuk növekvő sorrendjében.
Dijkstra-algoritmus ismertetése
Algoritmusok II. Gyakorlat 3. Feladat Pup Márton.
A Dijkstra és a kritikus út algoritmusok kapcsolata és szemléletes tanítása Kiss László főiskolai docens OE RKK MKI augusztus 25.
Lénárt Szabolcs Páll Boglárka
Gráf Szélességi bejárás/keresés algoritmusa
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G=(V,E) élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges gráf.
A Dijkstra algoritmus.
Feladat: Adott egy város, benne metrók és állomások. Írjunk algoritmust amely megszámolja hogy mennyi az a legkevesebb átszállás amellyel egy tetszőleges.
Készítette: Hanics Anikó. Az algoritmus elve: Kezdetben legyen n db kék fa, azaz a gráf minden csúcsa egy-egy (egy pontból álló) kék fa, és legyen minden.
Dijkstra algoritmusa Gubicza József (GUJQAAI.ELTE)
Prim algoritmusa Gubicza József (GUJQAAI.ELTE). Jellemzők Cél: Adott egyszerű gráfban a min. költségű feszítőfa meghatározása. Algoritmikus szinten: 3.
1 Szélességi Bejárás Györgyi Tamás – GYTNAAI.ELTE 2007 Március 22 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S b a d e f h g c.
1 Dijkstra Algoritmusa Györgyi Tamás – GYTNAAI.ELTE 2007 Április 02 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S a b c d e
Az ábrán az inicializáló blokk lefutása utáni állapotot láthatjuk. A KÉSZ halmazhoz való tartozást színezéssel valósítjuk meg. A nem KÉSZ csúcsok fehérek,
Mélységi bejárás Az algoritmus elve: Egy kezdőpontból kiindulva addig megyünk egy él mentén, ameddig el nem jutunk egy olyan csúcsba, amelyből már nem.
Dijkstra-algoritmus. A Dijkstra-algoritmus egy mohó algoritmus, amivel irányított gráfokban lehet megkeresni a legrövidebb utakat egy adott csúcspontból.
Kruskal-algoritmus.
Készítette Schlezák Márton
Business Mathematics A legrövidebb út.
Bellmann-Ford Algoritmus
Útkeresések.
2005. Információelmélet Nagy Szilvia 14. Viterbi-algoritmus.
Diszjunkt halmazok adatszerkezete A diszjunkt halmaz adatszerkezet diszjunkt dinamikus halmazok S={S 1,…,S n } halmaza. Egy halmazt egy képviselője azonosít.
Morvai Mária-Júlia F3D3D4.  Adott egy G=(V,E)élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó,véges gráf. Továbbá adott.
Gráf szélességi bejárása. Cél Az algoritmus célja az, hogy bejárjuk egy véges gráf összes csúcsát és kiírjuk őket a kezdőcsúcstól való távolságuk szerint.
DIJKSTRA- ALGORITMUS. A Dijkstra-algoritmus egy mohó algoritmus, amivel irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges gráfokban.
Szélességi bejárás Gráf-algoritmusok Algoritmusok és adatszerkezetek II. Gergály Gábor WZBNCH1.
Készítette : Giligor Dávid Neptun : HSYGGS
Prim algoritmus Algoritmusok és adatszerkezetek 2. Újvári Zsuzsanna.
Dijkstra algoritmus. Egy minimális költségű utat keres élsúlyozott gráfban A gráf lehet irányított vagy irányítás nélküli Feltétele, hogy pozitív élsúlyok.
Dijkstra algoritmus. Az algoritmus működése  Kezdésnél a kezdő csúcson kívül minden csúcs távolsága legyen ∞, a kezdő csúcs távolsága 0.  Feltételes.
Gráf Szélességi bejárás Készítette: Giligor Dávid Neptun : HSYGGS.
Dijkstra algoritmus Gráf-algoritmusok Algoritmusok és adatszerkezetek II. Gergály Gábor WZBNCH1.
3. Feladat Szélességi Bejárás FZGAF0 – Pintér László.
Algoritmus DAG = irányított körmentes gráf. Először ezt a tulajdonságot ellenőrizzük (mélységi bejárással), aztán rendezzük: Q: Sor adatszerkezet, kezdetben.
V 1.0 Szabó Zsolt, Óbudai Egyetem, Programozás II. Gráfok Dijkstra algoritmus Kruskal algoritmus.
Szélességi bejárás Pátyerkó Dorina (VTYX9O). Szélességi bejárás algoritmusa Kijelölünk egy kezdőcsúcsot. A csúcs szomszédjait megkeressük, majd betesszük.
A Dijkstra algoritmus.
Gráfok szélességi bejárása Dijkstra algoritmus
Készítette Tácsik Attila
Dijkstra algoritmusa: legrövidebb utak
Dijkstra algoritmusa: legrövidebb utak
Dijkstra algoritmusa: legrövidebb utak
43. Gombaszedés Kováts László.
Előadás másolata:

A Dijkstra algoritmus

1. lépés Kiválasztunk egy kezdő csúcsot, esetükben az 1est. Ennek a saját magához vett távolsága 0. Az 1 es el, már kész vagyunk, ezt zölddel jelöljük. A többié végtelen.

2. lépés A szomszédos csúcsok fölé annyit írunk, amennyi a hozzájuk vezető út súlya, 5 ,2, 15 közül 2 a legkisebb, ezért ezt a 3ast választjuk.

3. lépés Most a 3as on állunk, és ennek a szomszédait vizsgáljuk. Eddig pl a 2eshez 5 volt az út, de ha a 3ason keresztül megyünk,akkor már csak 3. Írjuk is át. 3,4,15,8 közül 3 a legkisebb így a 2est választom.

5. lépés 4es csúcsba így is úgy is 4 súlyú úton kell végigmennem így nem változtatok. Most a 4, 15, 8 közül lehet választani. Így a 4es csúcsra lépünk.

6.lépés A 3as és 4es csúcson keresztül a 6osba 5 súlyú úton tudunk eljutni, írjuk át.

7.lépés 5 és 8 közül 5 ös a kisebb így a 6 os csúcsra állok. 3as, 4es, 6os csúcson keresztül 8 helyett 7 súlyú uton tudok az 5ösbe jutni. Írjuk át.

8. lépés Más már nem maradt így ráállunk az 5ösre és ezzel bejártuk az egész gráfot.

9. (utolsó) lépés Kiszedhetjük a nem használt éleket és a megmaradtak a legrövidebb utak.