Alkalmazott statisztikai alapok: A mintavétel

Slides:



Advertisements
Hasonló előadás
A pedagógiai kutatás módszertana
Advertisements

I. előadás.
Statisztika II. I. Dr. Szalka Éva, Ph.D..
BECSLÉS A sokasági átlag becslése
A PEDAGÓGIAI KUTATÁS FOLYAMATA
Általános statisztika II.
Mérési pontosság (hőmérő)
Becsléselméleti ismétlés
Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék STATISZTIKA I. 11. Előadás.
Gazdaságelemzési és Statisztikai Tanszék
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Mintavétel Mintavétel célja: következtetést levonni a –sokaságra vonatkozóan Mintavétel.
E L E M Z É S. 1., adatgyűjtés 2., mintavétel (a teljes sokaságot ritkán tudjuk vizsgálni) 3., mintavételi információk alapján megállapítások, következtetések.
Statisztika II. II. Dr. Szalka Éva, Ph.D..
Előadó: Prof. Dr. Besenyei Lajos
Mintavételes eljárások
KÖZMŰ INFORMATIKA NUMERIKUS MÓDSZEREK I.
Regresszióanalízis 10. gyakorlat.
AZ ÉLETTANI PARAMÉTEREK MINŐSÉGELLENŐRZÉSE
Kvantitatív módszerek 7. Becslés Dr. Kövesi János.
A PEDAGÓGIAI KUTATÁS Dr. Molnár Béla Ph.D.. 1. PEDAGÓGIAI KUTATÁS CÉLJA, TÁRGYA Célja, hogy az új ismeretek feltárásával, pontosabbá tételével, elmélyítésével.
Hipotézisvizsgálat (1. rész) Kontingencia táblák
KÉT FÜGGETLEN, ILL. KÉT ÖSSZETARTOZÓ CSOPORT ÖSZEHASONLÍTÁSA
Nem-paraméteres eljárások, több csoport összehasonlítása
ÖSSZEFOGLALÓ ELŐADÁS Dr Füst György.
Statisztika II. VIII. Dr. Szalka Éva, Ph.D..
Statisztika II. III. Dr. Szalka Éva, Ph.D..
Alapfogalmak Alapsokaság, valamilyen véletlen tömegjelenség.
Adatmodellek A modellezés statisztikai alapjai. Statisztikai modell??? cél: feltárni, hogy bizonyos jelenségek között létezik-e az általunk feltételezett.
Matematikai alapok és valószínűségszámítás
Véletlenszám generátorok

A statisztikai próba 1. A munka-hipotézisek (Ha) nem igazolhatók közvetlen úton Ellenhipotézis, null hipotézis felállítása (H0): μ1= μ2, vagy μ1- μ2=0.
Nominális adat Módusz vagy sűrűsödési középpont Jele: Mo
STATISZTIKA II. 2. Előadás
STATISZTIKA II. 3. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék.
STATISZTIKA II. 4. Előadás
Kvantitatív Módszerek
Valószínűségszámítás
Gazdaságstatisztika Bevezetés szeptember 11.
Hipotézis vizsgálat (2)
Hipotézis-ellenőrzés (Folytatás)
Alapsokaság (populáció)
Többtényezős ANOVA.
Paleobiológiai módszerek és modellek 4. hét
Mintavételes eljárások
I. előadás.
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Mintavételes Eljárások.
A kombinációs táblák (sztochasztikus kapcsolatok) elemzése
Dr. Takács Attila – BME Geotechnikai Tanszék
Bevezetés a méréskiértékelésbe (BMETE80ME19) 2014/
Kutatásmódszertani dilemmák
Róbert Péter Egyetemi tanár Széchenyi Egyetem, Győr
Marketing információs
 A matematikai statisztika a természet és társadalom tömeges jelenségeit tanulmányozza.  Azokat a jelenségeket, amelyek egyszerre nagyszámú azonos tipusú.
Bevezetés, tippek Ea-gyak kapcsolata Statisztika II -más tárgyak kapcsolata Hogyan tanulj? Interaktív órák, kérdezz, ha valami nem világos! tananyag =előadások.
Gazdaságstatisztika Becsléselmélet október 30. és november 5.
Kvantitatív módszerek 2013 ősz MINTAVÉTEL, LEÍRÓ STATISZTIKA Kvantitatív módszerek október 1.
Mintavétel.
Eredetileg a statisztika matematikai eszközöket igénybe vevő államháztartástant jelentett, vagyis azon módszerek gyűjteményét és elméletét, amelyek segítségével.
Statisztikai folyamatszabályozás
Kiváltott agyi jelek informatikai feldolgozása 2016
Kun András István DE GTK Debrecen,
Becsléselmélet - Konzultáció
I. Előadás bgk. uni-obuda
Szabályozott és képes termékek/szolgáltatások, folyamatok, rendszerek
Kockázat és megbízhatóság
Informatikai Tudományok Doktori Iskola
A mintavétel.
Alkalmazott statisztikai alapok: A mintavétel
Alkalmazott statisztikai alapok: A mintavétel
Előadás másolata:

Alkalmazott statisztikai alapok: A mintavétel

Minek ez egyáltalán? Akkor alkalmazunk mintavételes vizsgálatot, ha a teljes sokaság vizsgálata: túl költséges (pénzben vagy időben), lehetetlen (pl. a sokaság elemei túl gyorsan cserélődnek vagy a sokaság praktikus szempontból végtelen nagyságú), az adatfelvétel tönkreteszi a vizsgált elemeket (pl. kósolás) vagy jelentősen megváltoztatja azokat (pl. .

Alapfogalmak Sokaság, populáció (population): azon adott jellemzővel leírható csoport létező összes eleme, amire vonatkozóan következtetést akarunk levonni vagy amit meg akarunk ismerni (mérni). Minta (sample): a populáció olyan része (részsokasága, részhalmaza), amelyről feltételezzük, hogy a vizsgálati szempontokból visszaadja a teljes sokaság viselkedését, jellemzőit (reprezentálja azt). Mintavétel (sampling): az a folyamat, amely során a sokaság valamely része kiválasztásra kerül a sokaság megismerése céljából (vagyis további elemzésre a sokaság helyett).

Reprezentativitás A minta valamely szempontból reprezentatív, ha szerkezete e szempontból megegyezik a sokaságéval. Csak akkor fontos, ha a teljes sokaságra akarunk következtetni. A további elemzés kritikus faktora: ha a minta nem reprezentálja a sokaságot, akkor nem is lehet annak vizsgálatából a sokasága általánosítani a következtetéseinket! Általában vett reprezentativitás a valóságban nincs. Mindig csak adott jellemzőkre, dimenziókra lehet a minta reprezentatív. A kutatási kérdés dönti el, hogy mire nézve legyen a minta reprezentatív (ami a kérdés szempontjából befolyásol(hat)ja a sokaság viselkedését). Előzetesen nem mindig állapítható meg, ilyenkor általában szakirodalmi tapasztalatokra hagyatkozva döntünk róla.

„Az én mintám nem reprezentatív. Mi van ilyenkor?” Az alábbiak közül valamelyik: Új mintát kell venni, vagy új elemek felvételével korrigálni. Új kutatási kérdést kell feltenni, amire nézve vagy reprezentatív a minta, vagy ami nem igényli a reprezentativitást (vagyis nem a teljes sokaságra vonatkozik). Ha az eltérés csak minimális (na de ezt ki dönti el?), akkor elég lehet súlyozással korrigálni.

Miből kell a mintát kiválogatni? Mintavételi keret: Olyan elemek (adategységek, pl. lakcímek, nevek) listája amelyekből a tényleges mintát vesszük. Ha nem illeszkedik tökéletesen a mintavételi keret és a célsokaság (pl. lakosság vs. telefonkönyv) akkor eleve lehetetlen a sokaságra nézve reprezentatív mintát venni.

A mintavétel folyamata Sokaság meghatározása Mintavételi keret meghatározása Mintavételi eljárás kiválasztása Mintanagyság meghatározása Mintavételi egységek (mintaelemek) kiválasztása Adatok összegyűjtése a mintában szereplő egységektől

Mintavételi eljárások Véletlen mintavétel: a sokaság minden elemének azonos esélye van arra, hogy bekerüljön a mintába. A valóságban azonban csak ezt közelítő eljárásokat is ide sorolják: a sokaság minden elemének ismert esélye van a mintába kerülésnek. Statisztikailag jól kezelhető. Nem véletlen mintavétel: a bekerülés valószínűsége nem azonos a sokaság minden elemére. Általában – különösen nagy mintáknál – statisztikailag rosszabb, mint a véletlen mintavétel (a minta nagyságának növekedés ugyanis nem vezet javuló reprezentativitáshoz).

Nem véletlen mintavételi eljárások Kényelmi vagy hozzáférhetőségi mintavétel Szakértői (elbírálásos) mintavétel: előzetes tudásunk alapján válogatjuk össze a mintát úgy, hogy az minél reprezentatívabb legyen. Kis minták esetén akár jobb is lehet, mint a véletlen minta. Kvótás mintavétel: a részsokaságokat bizonyos ismérvek szerint a teljes sokaságra jellemző arányban szerepeltetjük a mintában. Azokra nézve tehát biztosítjuk a reprezentativitást. A többi ismérv szerint azonban az súlyosan sérül (itt ugyanis kényelmi mintavétel történik).

Nem véletlen mintavételi eljárások Hólabda mintavétel: az első válaszadók javasolják vagy szervezik be a későbbi válaszadókat. Hatásosan növeli a válaszadási hajlandóságot, de rendkívül torzított mintát eredményez. Koncentrált kiválasztás: reprezentánsok (olyan elemek, amelyekből kevés van, de nagy a befolyásuk a teljes sokaság viselkedésére) kiválasztása. Kvalitatív módszereknél gyakori.

Véletlen mintavételi eljárások Valójában nincs ilyen, csak kvázi-véletlen eljárások vannak (hiszen már a véletlen szám generálása is lehetetlen), de az egyszerűség kedvéért ezeket összefoglalóan mégis így hívják.

Véletlen mintavételi eljárások Egyszerű véletlen mintavétel: Ha adott egy teljes mintavételi keret, akkor ennek minden egységének azonos esélyt adunk a mintába kerülésre (pl. véletlenszám-generátorral). Lehet visszatevéses vagy visszatevés nélküli. Ha minden elemnek van egy előre adott konstans bekerülési esélye, az a Bernoulli-féle mintavétel. Egyszerű, de az egyes mintavételek nagyon eltérő mintákat is eredményezhetnek (a becslés standard hibája nagy). Arányosítható is az elemek mérete alapján, ha ez fontos (pl. cégek esetén azok árbevételével vagy létszámával).

Véletlen mintavételi eljárások Szisztematikus mintavétel: Egy véletlenszerűen meghatározott első elemtől kezdve azonos képlet alapján kapja meg a következő elemeket (pl. minden 5-dik járókelő, vagy minden balra második ajtó stb.). Csak akkor használható, ha az elemek a sokaságban sorba rendezettek. Egyszerű. Keretet sem feltétlenül igényel! Védtelen azonban az elemek sorszámától függő hatások torzításától. Ha ilyen van, akkor nem véletlen a mintavétel. Egyik fajtája a véletlen út módszere: ha előre rögzítik az adatfelvevő mozgási szabályait (pl. egy emeletet fel és egy ajtót jobbra) , az adott terep előzetes ismerete nélkül, akkor véletlen-közeli mintát eredményez. Az első elemet véletlenszerűen kell kiválasztani.

Véletlen mintavételi eljárások Rétegzett mintavétel: Akkor használható ha a teljes sokaság diszjunkt részhalmazokra (rétegekre) osztható, és ha adott egy teljes keret. Az egyes rétegekből véletlenszerűen veszünk mintát. Ez csökkenti a minták mintavételenkénti eltéréseit az egyszerű véletlen mintához képest. Vagyis pontosabb lehet, ha a belső szórás kicsi, a külső pedig nagy. Leegyszerűsíti az adatfelvételt is.

Véletlen mintavételi eljárások Csoportos mintavétel: A sokaságnak itt is diszjunkt részhalmazokra (klaszterekre) kell bonthatónak lennie, melyek belül minél heterogénebbek. Itt azonban a részhalmazokat választjuk ki véletlenül, és azokon belül vagy teljes adatfelvételt végzünk (egylépcsős), vagy véletlen mintát veszünk (kétlépcsős). Előnye, hogy koncentráltabb az adatfelvétel. Nem működik jó, ha a klaszterek közti külső szórás nagy.

Mintavételi hibák két fajtája Mintavételi hiba: a minta és a célsokaság struktúrája közti különbség. A véletlen mintavételi módszereknél becsülhető, a nem véletlen módszereknél nem. Nem mintavételi hiba: nem a mintavételből, hanem más okból fakad. Pl. válaszmegtagadás, rossz kérdések, téves válaszok.

A kiválasztási torzítás Abból ered, ha a minta kialakítója vagy az adatfelvevő nem véletlenszerűen dönti el, hogy mely elemet választ be a mintába, vagy zár ki a mintából. Önkiválasztási torzítás: ennek az a változata, ha maga a sokasági elem (pl. válaszadó) dönt úgy (nem véletlenszerűen), hogy bekerül vagy kimarad.

A mintanagyság meghatározása Függ a kívánt pontosságtól és megbízhatóságtól, valamint a költségektől és az egyéb lehetőségektől. A pontosság (pontbecslésnél) a becslési intervallum mérete. Az átlag standard hibája: SE = SD / (n)½ Adott H intervallum mellett, ismerve a kívánt megbízhatósági szintet (így normál eloszlás feltételezése estetén az ahhoz tartozó z értéket is) és szórást: H = z * SE = z * [SD / (n)½]

A mintanagyság meghatározása Ha a teljes sokaságot végesnek feltételezzük, akkor korrigálni kell a standard hiba képletét: SE = [SD / (n)½] * [(N – n)/(N – 1)]

A mintanagyság meghatározása Befolyásolja még a mintanagyságot, hogy: Akarunk-e alsokaságokat vizsgálni, mert akkor ezeknek is megfelelő számosságúnak kell lenni. Mekkora válaszadási arányra számítunk. Számítunk-e torzító tényezőkre (pl. válaszmegtagadás).

Felhasznált és egyben ajánlott irodalom Ghauri & Gronhaug (2011) Hunyadi, Mundruczó & Vita (1997) Sajtos & Mitev (2008)