Egészségügyi ügyvitelszervező szak Bevezető előadás

Slides:



Advertisements
Hasonló előadás
7-8.óra: Sejtbiológiai ismeretek
Advertisements

Sejtmag és osztódás.
Mi az a mikroorganizmus?
Összefoglaló feladatok
Sejttan.
Sejtalkotók.
Sejtélettan 2011 masszőr évfolyam.
A sejtalkotók és működésük
Az emberi test felépítése A bőr és a mozgás szervrendszere
Az emberi test felépítése
Sejtjeink jellemzői 4. Lecke 8. osztály.
5-6. óra: Prokarióták, baktériumok
A sejtalkotók felépítése és működése.
A növényi sejt.
Biokémia: az élő anyagok kémiája
Szénvegyületek forrása
Nukleinsavak – az öröklődés molekulái
A növények teste és életműködése
A SEJT.
Az élő sejtek belső rendezettségi állapotukat folyamatosan fentartják. Ezt bonyolult mechanizmusok biztosítják, amelyek révén a sejt energiát von el a.
Génexpresszió (génkifejeződés)
Endoszimbionta sejtorganellumok II.
Vezikuláris transzport
Testünk építőkövei.
A sejt az élő szervezetek alaki és működési egysége
Nukleusz A sejt információs rendszere
A növények ásványianyag-felvétele
Lizoszóma Enzimek Membrán proteinek Transzport molekulák a membránban
Citokinézis Csepregi Anna. Figure 18-2 Essential Cell Biology (© Garland Science 2010) Citokinézis helye a sejtciklusban.
Nukleotid típusú vegyületek
NUKLEINSAVAK MBI®.
Speciális működésű sejtek Általában: a soksejtű, szövetes élőlények sejtjei különleges feladatok ellátására módosulnak, vagyis felépítésük megváltozik.
Sejtalkotók és citoplazma
Nyitott biologiai rendszerek
Sejtmag és osztódás.
AZ ÁLLATI ÉS A NÖVÉNYI SEJT ÖSSZEHASONLÍTÁSA
Sejtalkotók III..
A sejtalkotók I..
Evolúcióbiológia és asztrobiológia
4. óra: Eukarióta egysejtűek
Balázs Csaba dr. Budai Irgalmasrendi Kórház
Vezikuláris transzport Dr. med. habil. Kőhidai László Egyetemi docens Semmelwesi Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet október 16.
Az élővilág főbb csoportjai, mikroorganizmusok
Testünk építőkövei.
Az élővilág legkisebb egységei
Sejttan.
Sejtek, szövetek. Cells The organization of prokaryotic and eukaryotic cells.
Egyed alatti szerveződési szintek
BIOLÓGIA TÁRGYA, RÉSZTUDOMÁNYAI, SZERVEZŐDÉSI SZINTEK
A b i o g é n e l e m e k. Egyed alatti szerveződési szintek szervrendszerek → táplálkozás szervrendszere szervek → gyomor szövetek → simaizomszövet sejtek.
2.3. Sejtalkotók (az eukarióta sejtben). Sejthártya (plazmamembrán): Membrán szerkezetű sejtalkotó szerepe: Elválasztja, de egyben össze is köti a sejtet.
4. lecke Nem sejtes rendszerek Vírusok, viroidok és a prionok.
DNS szintézis, replikáció Információ hordozó szerep bizonyítéka Avery-Grifith kísérlet Bakterifágos kísérlet.
34. lecke A fehérjék felépítése a sejtben. Lényege: Lényege:  20 féle aminosavból polipeptidlánc (fehérjelánc) képződik  A polipeptidlánc aminosav sorrendjét.
Sejtbiológia (összefoglalás) Sejtbiológia fogalma
30. Lecke Az anyagcsere általános jellemzői
Nukleinsavak. Nukleinsavak fontossága Az élő szervezet nélkülözhetetlen, minden sejtben megtalálható szénvegyületei  öröklődés  fehérjék szintézise.
EGYSEJTŰ EUKARIÓTÁK APRÓ ÓRIÁSOK.
Hormonokról általában Hormonhatás mechanizmusa
Rafts are liquid-ordered domains that are more tightly packed than the surrounding non-raft phase of the bilayer. The tighter packing is due to the saturated.
A sejtes szerveződés.
2. Táplálkozástani Alapfogalmak és Koncepciók
BAKTÉRIUMOK.
A sejt az élő szervezetek alaki és működési egysége
Gyakran felvetődő kérdés
A sejt szerkezete A sejt az élő szervezetek alaki és működési egysége
Egészségügyi ügyvitelszervező szak Bevezető előadás
Egészségügyi ügyvitelszervező szak Bevezető előadás
Válogatott fejezetek sejtbiológiából („VFSB”, BSc, biomérnök)
A bakteriorodopszin működése
Előadás másolata:

Egészségügyi ügyvitelszervező szak Bevezető előadás H.-Minkó Krisztina 2015 szeptember 7.

Szervtan, Szervezettan, Anatómia Sejttan: modern sejttan a morfológia, biokémia, genetika és élettan eredményeit integráló tudomány Szövettan Szervtan, Szervezettan, Anatómia Kutatás módszertan, gyakorlati részek

Minden a Földön található élőlény sejtes szerveződésű Minden a Földön található élőlény sejtes szerveződésű. Szervezetük egyetlen (prokarióták, egysejtű eukarióták), vagy sok sejtből (állatok, növények, gombák) áll, illetve többsejtűek esetében a sejtek által termelt sejtközötti (extracelluláris) állományból. Minden szövetben a sejtek a funkcionális és szerkezeti elemek, a legkisebb élő részei a testnek, ezekből épülnek fel a szövetek (hasonló funkció!), illetve a szervek. Az állati sejtek magvas sejtek (eukaryota), membránnal elhatárolt genetikai anyagot tartalmaznak, melyet citoplazma vesz körül, amely számos sejtorganellumot tartalmaz.

https://en.wikipedia.org/wiki/Archaea Despite this visual similarity to bacteria, archaea possess genes and severalmetabolic pathways that are more closely related to those of eukaryotes, notably the enzymes involved in transcription andtranslation. Other aspects of archaeal biochemistry are unique, such as their reliance on ether lipids in their cell membranes. Archaea use more energy sources than eukaryotes: these range from organic compounds, such as sugars, to ammonia, metal ionsor even hydrogen gas. Salt-tolerant archaea (the Haloarchaea) use sunlight as an energy source, and other species of archaea fix carbon; however, unlike plants and cyanobacteria, no known species of archaea does both. Archaea reproduce asexually by binary fission, fragmentation, or budding; unlike bacteria and eukaryotes, no known species forms spores. Archaea were initially viewed as extremophiles living in harsh environments, such as hot springs and salt lakes, but they have since been found in a broad range of habitats, including soils, oceans, marshlands and the human colon, oral cavity, and skin.[4] Archaea are particularly numerous in the oceans, and the archaea in plankton may be one of the most abundant groups of organisms on the planet. Archaea are a major part of Earth's life and may play roles in both the carbon cycle and the nitrogen cycle.  One example is the methanogens that inhabit human and ruminant guts, where their vast numbers aid digestion. Methanogens are used in biogas production and sewage treatment, and enzymes from extremophile archaea that can endure high temperatures and organic solvents are exploited inbiotechnology. https://en.wikipedia.org/wiki/Archaea Figure 1-29 Essential Cell Biology (© Garland Science 2010)

A sejtek az élet legkisebb építőelemei, az emberi test alapvető működési egységei, ezekből épülnek fel a szövetek, szervek, szervrendszerek. Az emberi szervezet alapegységyei az ún. eukarióta (sejtmagvas) sejtek.   Az eukarióta sejtek általános jellemzői Az eukarióta sejtek alapvető alkotóelemei a sejtmag és a citoplazma (sejtplazma). A sejtmag egy membránnal elhatárolt rész a sejten belül, ez tartalmazza a genetikai anyagot, az információhordozó DNS és RNS molekulákat. Ez a sejtszervecske, a mag különíti el az eu- és prokarióta sejteket (pl. baktériumok) egymástól, utóbbiakban a genetikai anyag nem különül el ilyen formában. A sejtplazma (citoplazma, sejtfolyadék) a sejt tápanyagainak (amelyek kémiai elemek és arra szolgálnak, hogy a sejt felépítse belőle saját részeit) keveréke („molekuláris leves”). A sejtfolyadékon belül helyezkedik el tehát a sejtmag, valamint az egyéb sejtszervecskék. A riboszómák, amiket termelési központoknak is nevezhetünk, szemcsés testecskék, bennük termelődnek a sejt fehérjéi (szerkezeti fehérjék és enzimek is). A sejtmagban levő DNS molekulákról RNS-ek íródnak át, amelyek a magból a sejtfolyadékba kijutva hozzákötődnek a riboszómákhoz és ott információtartalmuk lefordítódik (transzláció) „fehérje nyelvre”. A termelési központok a sejtmag elkülönült részében (magvacska) készülnek el, ezután kerülnek a sejtfolyadékba, onnan vagy beépülnek az ún. endoplazmatikus retikulumba, vagy szabadon „úsznak” a citoplazmában. A testünket felépítő sejtekre az is jellemző, hogy a sejtfolyadékot belső membránrendszerek tagolják fel, ez sem jellemző a prokarióta sejtekre. Jelenleg úgy gondolják a kutatók, hogy az evolúció során a belső membránrendszerek –beleértve a maghártyát is- a külső, az egész sejtet elhatároló membránból (sejthártya), annak betűrődésével alakultak ki. Ezek a hártyák többnyire lapos zsákszerű képződményeket alkotnak, amelyeknek végeiről kis gömböcskék képesek leválni. Ezzel ellentétesen ilyen hártyagömböcskék (vezikulumok) bele is olvadhatnak a zsákszerű képződményekbe. Ez teszi lehetővé az anyagok ide-oda szállítását a sejtekben. A membránok közös tulajdonsága, hogy kémiailag egységes szerkezetűek (trilamináris unit-membrán). Ez a membránrendszer osztja fel a sejtfolyadékot különböző összetételű, ezáltal különböző funkciójú részekre. Fontos feladata van a sejtet felépítő makromolekulák szintézisében, módosításában, raktározásában, szállításában, de részt vesz a káros anyagok méregtelenítésében is. A membránrendszer elemei a következők: maghártya, sima és durva felszínű endoplazmatikus retikulum (sER, dER), Golgi-készülék, peroxiszómák, váladékszemcsék, lizoszómális rendszer. Ha térben képzeljük el ezeket, akkor rögtön szembetűnő, hogy polarizáltan helyezkednek el. A maghártya körül vannak a dER zsákocskái, amelyeket távolabb a Golgi-készülék lemezei követnek. A sejtfolyadék membránrendszerének fontos elemei azok a tároló zsákok, amelyeket úgy képzelhetünk el, mint pitakenyér-halmokat. Felfedezőjükről a Golgi –készülék nevet kapták. Ide jutnak a riboszómákban megtermelt fehérjék, itt kapnak megfelelő molekuláris jelöléseket, hogy a megfelelő felhasználási helyükre kerülhessenek. A sejtekben újrafeldolgozó központok (lizoszóma, feloldó test) is vannak, vagyis olyan szervecskék, amelyek enzimeket (a fehérjék speciális csoportja: biokatalizátorok) tarlalmaznak a tápanyagok, „elromlott” sejtalkotók, már nem használt molekulák megemésztésére. A lebontott alkotóelemek azután új sejtalkotók felépítésében vesznek részt. A mitokondrium elnevezésű szervecskék, amelyek fonalszerű szemcsés megjelenésűek, a sejtek erőművei. Ezekben történik a sejtlégzés, vagyis oxigén segítségével szerves molekulákat bontanak le vízzé és széndioxiddá. Ez a folyamat energiafelszabadulással jár, mely energia speciális energiahordozókban tárolódik. Vagyis komplex vegyületek jönnek létre a folyamatban, melyek a sejtek más részeibe mozogva minden sejtfolyamatot (sejtanyagcsere) energiával látnak el.

Pro- és eukaryota sejt méretbeli különbsége baktérium (prokaryota) Makrophag (eukaryota) sejt phagocytált baktériumokkal (prokaryota) baktérium (prokaryota) makrophag (eukaryota)

Idealizált állati sejt összetevői (fény- és elektronmikroszkópos „leltár”) 

Állati sejt felépítése membránnal határolt (ER, Golgi, lysosoma, mitochondrium, transzport vesiculák, peroxisoma, …) sejtmembrán sejt sejtmag sejtorganellumok protoplasma membránnal nem határolt (sejtváz, ribosoma) tartalék tápanyagok (zárványok) cytoplasma cytosol

Figure 1-24 Essential Cell Biology (© Garland Science 2010)

http://203.250.122.194/lecture/histology/htmht1/his01-1.htm

Figure 1-22 Essential Cell Biology (© Garland Science 2010)

http://serc.carleton.edu/microbelife/research_methods/genomics/translat.html

Figure 1-23 Essential Cell Biology (© Garland Science 2010)

cytoskeleton-the-movers-and-shapers-in-the-cell/ Citoszkeleton This image shows some animal cells. They are stained with fluorescent labels to help visualise the cytoskeleton with microtubules (green), actin filaments (red), and the nucleus (blue). The cytoskeleton is not usually shown in simple diagrams of the cell because it is a complex meshwork of strands. Cells would not be cells with out their cytoskeleton (Images courtesy of Mark Shipman, James Blyth and Louise Cramer, Laboratory for Molecular Cell Biology, University College London, UK) contributes to the architecture and transport system of the cell MT: compressional support Microfil: tensional support http://bscb.org/learning-resources/softcell-e-learning/ cytoskeleton-the-movers-and-shapers-in-the-cell/

http://cronodon.com/BioTech/Cell_structure.html méregtelenítés

Figure 1-18 Essential Cell Biology (© Garland Science 2010)

Figure 1-19 Essential Cell Biology (© Garland Science 2010)

Figure 1-20 Essential Cell Biology (© Garland Science 2010)

Figure 1-21 Essential Cell Biology (© Garland Science 2010)

A SEJT RENDSZERELMÉLETI MEGKÖZELÍTÉSBEN A sejt környezetétől féligáteresztő hártyával (sejtmembrán) elhatárolt, önmagát újra létrehozni képes, szervezetileg zárt metabolikus (anyagcsere) rendszer (hálózat). Ezt a hálózatot néhány nagyon szervezett makromolekula építi fel: strukturális fehérjék, enzimek (az anyagcsere folyamatokat elősegítő fehérjék), RNS-ek (a genetikai információt közvetítő nukleinsavak), DNS (a genetikai információt tároló nukleinsav), amely egyben felelős a sejt sokszorozódásáért (reprodukció).   Az élő hálózat jellemzője egyben, hogy anyagilag és energetikailag nyitott, vagyis folyamatos rajta keresztül az anyag és energiaáramlás, ezáltal a rendszer újra létrehozza és ki tudja javítani önmagát, ugyanakkor képes állandóságának fenntartására, annak megörökítésére. Az evolúciós kreativitás három fő formája a mutáció, a gén „kereskedelem”, valamint a szimbiózis, amelyeken keresztül az élet kiteljesedett az első ősbaktériumoktól az emberig megőrizve az önmegújuló hálózati alapmodellt.

Képek forrása: Essential Cell Biology (© Garland Science 2010) http://connieclass.blogspot.hu/2010/09/eukaryotic-cell-structure.html

http://www.macroevolution.net/eukaryotic-cell.html