Gazdaságstatisztika Becsléselmélet 2014. október 30. és november 5.

Slides:



Advertisements
Hasonló előadás
Összetett kísérleti tervek és kiértékelésük:
Advertisements

I. előadás.
II. előadás.
Statisztika II. I. Dr. Szalka Éva, Ph.D..
BECSLÉS A sokasági átlag becslése
Általános statisztika II.
Mérési pontosság (hőmérő)
Becsléselméleti ismétlés
Gazdaságelemzési és Statisztikai Tanszék
Statisztika II. IX. Dr. Szalka Éva, Ph.D..
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Mintavétel Mintavétel célja: következtetést levonni a –sokaságra vonatkozóan Mintavétel.
Statisztika II. VI. Dr. Szalka Éva, Ph.D..
E L E M Z É S. 1., adatgyűjtés 2., mintavétel (a teljes sokaságot ritkán tudjuk vizsgálni) 3., mintavételi információk alapján megállapítások, következtetések.
Statisztika II. IV. Dr. Szalka Éva, Ph.D..
Statisztika II. II. Dr. Szalka Éva, Ph.D..
Előadó: Prof. Dr. Besenyei Lajos
Mintavételes eljárások
III. előadás.
Regresszióanalízis 10. gyakorlat.
Kvantitatív módszerek 7. Becslés Dr. Kövesi János.
Statisztika II. VIII. Dr. Szalka Éva, Ph.D..
Statisztika II. III. Dr. Szalka Éva, Ph.D..
Alapfogalmak Alapsokaság, valamilyen véletlen tömegjelenség.
A statisztikai próba 1. A munka-hipotézisek (Ha) nem igazolhatók közvetlen úton Ellenhipotézis, null hipotézis felállítása (H0): μ1= μ2, vagy μ1- μ2=0.
Egytényezős variancia-analízis
Nominális adat Módusz vagy sűrűsödési középpont Jele: Mo
STATISZTIKA II. 2. Előadás
STATISZTIKA II. 4. Előadás
STATISZTIKA II. 6. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék.
Statisztika.
Kvantitatív Módszerek
Idősor elemzés Idősor : időben ekvidisztáns elemekből álló sorozat
Valószínűségszámítás
Gazdaságstatisztika Bevezetés szeptember 11.
Gazdaságstatisztika 14. előadás.
Gazdaságstatisztika 13. előadás.
Hipotézis vizsgálat (2)
Következtető statisztika 9.
Hipotézis-ellenőrzés (Folytatás)
Alapsokaság (populáció)
Várhatóértékre vonatkozó próbák
Mintavételes eljárások
I. előadás.
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Mintavételes Eljárások.
Bevezetés a méréskiértékelésbe (BMETE80ME19) Intervallumbecslések 2014/
Bevezetés a méréskiértékelésbe (BMETE80ME19) 2014/
Valószínűségszámítás II.
A számítógépes elemzés alapjai
Bevezetés a méréskiértékelésbe (BMETE80ME19) 2014/
Bevezetés, tippek Ea-gyak kapcsolata Statisztika II -más tárgyak kapcsolata Hogyan tanulj? Interaktív órák, kérdezz, ha valami nem világos! tananyag =előadások.
Kvantitatív módszerek Becsléselmélet október 15.
Leíró statisztika, részekre bontott sokaság, becslés Árva Gábor PhD Hallgató.
Gazdaságstatisztika Gazdaságstatisztika Korreláció- és regressziószámítás II.
Konzultáció – Részekre bontott sokaság vizsgálata, Becslés November 5. Gazdaságstatisztika.
Kvantitatív módszerek 2013 ősz MINTAVÉTEL, LEÍRÓ STATISZTIKA Kvantitatív módszerek október 1.
A számítógépes elemzés alapjai
Kvantitatív módszerek
Paraméteres próbák- gyakorlat
Statisztikai folyamatszabályozás
Leíró statisztika gyakorló feladatok október 15.
Kvantitatív módszerek
II. előadás.
Kvantitatív módszerek MBA és Számvitel mesterszak
Becsléselmélet - Konzultáció
Gazdaságstatisztika Konzultáció a korreláció- és regressziószámítás, idősorok elemzése témakörökből.
I. Előadás bgk. uni-obuda
Hipotézisvizsgálatok Paraméteres próbák
Szabályozott és képes termékek/szolgáltatások, folyamatok, rendszerek
Gazdaságinformatikus MSc
2. Regresszióanalízis Korreláció analízis: milyen irányú, milyen erős összefüggés van két változó között. Regresszióanalízis: kvantitatív kapcsolat meghatározása.
Előadás másolata:

Gazdaságstatisztika Becsléselmélet október 30. és november 5.

Sokaság: a vizsgálat tárgyát képező egységek összessége Minta: valamely valószínűségi változóra vonatkozó véges számú független kísérlet vagy megfigyelés (mérés) eredménye Mintavétel Következtetés Matematikai statisztika lényege A megfigyelési eredmények a minta elemei, a megfigyelések száma a minta nagysága vagy elemszáma. 2 Mintavétel: a statisztikai sokaságból információszerzés céljából véletlenszerűen egyedi elemeket emelünk ki A minta elemei az alapsokaság eloszlásával megegyező eloszlású valószínűségi változók.

Mintavétel  Cél: következtetéseket vonjunk le a teljes sokaságra vonatkozóan a sokaság részleges megismerése által  NEM A MINTA KONKRÉT JELLEMZÉSE ÉRDEKEL BENNÜNKET. A MINTA CSAK EGY ESZKÖZ, AMELYNEK SEGÍTSÉGÉVEL KÖVETKEZTETNI KÍVÁNUNK A SOKASÁGRA, ILL. ANNAK TULAJDONSÁGAIRA.  Így részleges megfigyelések eredményéből következtetünk a teljes sokaságra  A statisztikai mintavételek és az ebből származó adatokat felhasználó elemzések mindig tartalmaznak hibákat.  A statisztikai hiba a statisztika szükségszerű velejárója, és fontos annak számszerűsítési képesssége. 3

Mintavételi hiba  Mintavétellel kapcsolatos hibák két nagy csoportja:  Adatgyűjtéshez kapcsolódó hibák: pl. definíciós hibák, nemválaszolási hibák, végrehajtási hibák – NEM MINTAVÉTELI HIBA A technika fejlődésével sokféle módon lehet ellene védekezni  A teljes sokaság megismeréséről való lemondás ára – MINTAVÉTELI HIBA olyan eljárásokat keresünk, hogy ez a lehető legkisebb legyen  A mintavételi hiba annál kisebb, minél nagyobb a minta. 4

Mintavételi hiba  A mintából számított bármely mutató értéke mintáról mintára változik.  A mintából számított értékek a megfelelő sokasági jellemző körül szóródnak. Ez a szóródás kisebb minták esetében nagyobb, nagyobb minták esetében kisebb.  A mintavételi hiba a vizsgált mutató lehetséges mintákból számított értékeinek átlagos eltérését mutatja a megfelelő sokasági értéktől. 5

Adatfelvételi módok 6 Adatfelvétel Teljes körű – csak véges sokaság esetén (pl. népszámlálás) Részleges Kísérleti eredmények gyűjtése Mintavételes megfigyelés Egyéb részleges megfigyelés Véletlen(szerű) kiválasztás Nemvéletlen(szerű) kiválasztás ismert vagy meghatározható a sokaság elemeinek mintába kerülési esélye reprezentativitás Mintavételi hiba számszerűsítési képessége

Véletlen mintavételi eljárások  Statisztikai minta definíciója: valamely valószínűségi változóra vonatkozó véges számú független kísérlet vagy megfigyelés (mérés) eredménye  A véletlen mintavétel olyan kiválasztási eljárás, melynek során ismert vagy meghatározható a sokaság elemeinek mintába kerülési esélye. A mintavételi hiba számítása csak véletlen minta esetében lehetséges. A véletlen minta biztosítja a reprezentativitást.  A reprezentativitás azt jelenti, hogy a minta összetétele csak a véletlen hatások miatt tér el a sokaságétól.  visszatevéses egyszerű véletlen minta,  visszatevés nélküli egyszerű véletlen minta,  rétegzett minta,  csoportos és  többlépcsős minta 7

 A visszatevéses egyszerű véletlen mintavétel esetén a sokaságból egyenlő valószínűséggel, a visszatevéses technika miatt egymástól függetlenül veszünk mintát.  A visszatevés nélküli egyszerű véletlen mintavétel során a sokaságból egyenlő valószínűséggel veszünk mintát, de egy sokasági elem csak egyszer kerülhet a mintába, így a mintaelemek egymástól nem függetlenek.  Minta elemszám: minél nagyobb a minta, annál megbízhatóbb a következtetés, mivel annál kisebb a véletlen szerepe  Eredeti sokaság heterogeneitása: minél heterogénebb az alapsokaság, annál nagyobb a véletlen szerepe  A rétegzett mintavétel esetében a sokaságot egy csoportképző ismérv szerint átfedésmentes, az egész sokaságot lefedő rétegekre bontjuk, majd minden rétegből egyszerű véletlen mintát veszünk. Véletlen mintavételi eljárások

 Rétegzett (R) minta alkalmazása:  Ha a sokaság véges és heterogén, s előzetes információink vannak arra nézve, hogy ezt a sokaságot hogyan lehet homogén csoportokba sorolni  Feltétel a rétegképző ismérv és rétegenkénti listák ismerete  A sokaságot homogén(ebb) részsokaságokra bontjuk (átfedésmentesen és teljesen), majd a rétegeken belül egymástól függetlenül egyszerű véletlen mintavételt végzünk.  A csoportos és többlépcsős mintavétel alkalmazásakor olyan nyilvántartásból történik a kiválasztás, amely a sokaság egységeit nem elkülönítve, hanem természetes vagy mesterséges csoportokban tartalmazza.  a csoportok közül választunk egyszerű véletlen mintát, majd a mintába került csoportok minden egysége bekerül a mintába.  a csoportos minta annál megbízhatóbb, minél heterogénebbek a csoportok Véletlen mintavételi módok

A becslés elmélete  (Majdnem) minden elméleti eloszlásnak van(nak) paramétere(i)  Becslési eljárások:  Pontbecslés: a becsülni kívánt elméleti paramétert egy értékkel becsüli  Intervallumbecslés: előre meghatározott megbízhatósággal egy intervallumot ad a keresett sokasági paraméterre  A becsülni kívánt sokasági paraméter jelölése: Θ  Ezek a sokaság számunka ismeretlen konstans értékei, azaz értékük nem függ a véletlentől  A becslés a sokaságból kivett véletlen minta alapján valósul meg:  a mintaelemek függvénye, becslőfüggvény  Véletlen minta esetén az aktuális minta függ a véletlentől, ezért minden mintaelem, és a függvényükben számított becslés is valószínűségi változó.  A mintából számított pontbecslés:

Mintavétel – A becslés elmélete Minta-2 Minta-1 Minta-3 mintáról mintára változik maga is valósz. változó adott elméleti eloszlással, szórással stb. jellemezhető

A mintajellemzők fontosabb tulajdonságai  Minden mintaelem és az azokból számított jellemző mintavételi ingadozásnak van kitéve: valószínűségi változók.  A mintajellemzők eloszlása a mintavételi eloszlás.  Véges N elemszámú sokaságot egyetlen Y ismérv szerint vizsgáljuk. A sokaság elemeit a megfelelő ismérvértékekkel együtt felsoroljuk:  A mintát mindig elemeinek felsorolásával adjuk meg:  Az egyes y i mintaelemek valószínűségi változók: várható értékével és varianciájával jellemezzük.

Becslés elmélete  Mikor tekinthető a mintából számított mutató az ismeretlen elméleti paraméter jó becslésének? Mikor jobb egy becslés, mint a másik?  Becslési kritériumok (Fisher kritériumok)  Torzítatlanság  Hatásosság  Konzisztencia  Elégségesség

Becslési kritériumok - torzítatlanság  Torzítatlan a becslőfüggvény, ha annak várható értéke megegyezik a becsülni kívánt sokasági paraméterrel:  Két torzított becslőfüggvény közül azt tekintjük jobbnak, amelyiknél kisebb a torzítás abszolút értéke.  Nincs szisztematikus, egyirányú eltérés a becslés és a becsült paraméter között. f(x) torzítatlan torzított

Példa - Torzítatlan becslés  F(x), f(x), M(  ), D(  ) …., S 1 *, S 2 *, S 3 *, S 1, S 2, S 3 

Becslési kritériumok - Hatásosság  Két becslés közül a kevésbé ingadozót tekintjük hatásosabbnak. f(x)

Hatásos becslés  (Normális el.) F(x), f(x), M(  )= , D(  )=  Me 1 Me 2 Me 3 torzítatlan konzisztens elégséges Me

Becslési kritériumok - konzisztencia  Konzisztens a becslőfüggvény, ha ingadozása a becsült paraméter körül a minta elemszámának növelésével egyre csökken.  A becslőfüggvény értékei nagy minta esetén jól közelítsék a megfelelő sokasági jellemzőt. f(x)

Becslési kritériumok - elégségesség  A becslés elégséges, ha minden információt tartalmaz a paraméterre vonatkozóan. Nincs más olyan becslés, amely a paraméterről több információt szolgáltatna, mint az elégséges becslés.

Pontbecslés  Analógia elve: a mintából a becsülni kívánt jellemzővel megegyező tartalmú mutatót számítunk  Mi történik, ha az analógia nem működik?  Becslőfüggvények alkalmazása: a becslőfüggvénybe helyettesítjük a minta konkrét értékeit  pontbecslés  Pontbecslés módszerei:  Maximum-likelihood módszer  Legkisebb négyzetek módszere  Momentumok módszere  Kvantilisek módszere  Grafikus paraméterbecslés

Legkisebb négyzetek módszere  Nem feltételezi a sokaság eloszlásának ismeretét, de azt igen, hogy van egy törvényszerűség, amely feltételezésünk szerint megfigyelési adatainkat előállította  modell  A LN módszere úgy határozza meg e modell paramétereit, hogy a tényleges és becsült paraméterrel illesztett modellek eltéréseinek négyzetösszege minimális legyen.  A LN módszer a tényleges megfigyelések és a minta alapján becsült modell négyzetes távolságát minimálja. Eszköze a szélsőértékszámítás.

Maximum likelihood módszer (ML)  Ismert sokasági eloszlást tételez fel, és e sokasági eloszlás ismeretlen paraméterét becsüli.  Az LF mutatja meg, hogy adott eloszlás és különböző paraméterértékek esetében mennyire valószínű, hogy éppen a szóban forgó minta adódik a mintavétel eredményeképpen.  Ez a valószerűség az ismeretlen paraméter(ek) függvénye: likelihood függvény (LF).  LF ismeretében a feladat, olyan ismeretlen paraméter(eke)t keresni, amely(ek) mellett ez a függvény a maximumát veszi fel, azaz annak hihetősége, hogy az adott konkrét minta éppen abból az eloszlásból származik, a lehető legnagyobb.

Momentumok módszere  Eloszlások paramétereinek becslésére szolgál.  Feltétel: ismert a sokasági eloszlás  A sokasági eloszlás paraméterei és momentumai kapcsolatba hozhatók egymással:  a tapasztalati momentumokat a mintából kiszámítjuk, egyenlővé tesszük a paraméterekkel kifejezett sokasági momentumokkal, és következtetünk a sokasági paraméterekre.  Másképpen: olyan sokasági momentumokat keres, amely mellett a sokaság és a minta megfelelő momentumai megegyeznek.  Konzisztens becslőfüggvényeket eredményez.

Intervallumbecslés  Pontbecslés: az ismeretlen sokasági jellemző értékére egy mintából egyetlen pontot határoztunk meg, amely eleget tett valamilyen követelménynek.  Intervallumbecslés: a minta alapján olyan intervallumot határozunk meg, amely előre megadott (nagy) valószínűséggel tartalmazza a becsülni kívánt jellemzőt.

Intervallumbecslés Minta-2 Minta-1 Minta-3 mintáról mintára változik maga is valósz. változó adott elméleti eloszlással, szórással stb. jellemezhető Emlékeztető

Intervallumbecslés  A pontbecslés csak véletlenül egyezik meg a sokasági paraméterrel, általában annak környezetében helyezkedik el.  Hogy milyen sugarú környezetében?  A mintavételi hibától függ.  A pontbecslés intervallumbecsléssel egészíthető ki.  A mintavételi hibát is figyelembe véve adott (nagy) megbízhatóságú intervallumbecslést adunk a becsülni kívánt sokasági paraméterre.  Milyen széles legyen, hogy lefedje a becsülni kívánt sokasági paramétert?  A mintastatisztika szóródásának mértéke függ a minta elemszámától.  A mintavételi eloszlás ismeretében meg tudunk adni egy olyan intervallumot, amely az ismeretlen paramétert nagy valószínűséggel tartalmazza.  A konfidencia-intervallum számításához ismernünk kell, hogy hogyan viselkedik a sokasági paramétert becslő függvényünk: mi a becslőfüggvény átlaga és szórása, és a becslőfüggvény, mint valószínűségi változó milyen eloszlást követ.

Intervallumbecslés  Az intervallumbecslés lényege, hogy ismerjük pontbecslésünk valószínűségi tulajdonságait, és ezek segítségével egy adott megbízhatósági intervallumot adunk meg a sokasági paraméterre.  A konfidencia-intervallum is valószínűségi változó, vagyis a konfidencia-intervallumok is mintáról mintára változnak.  A mintavétel végrehajtása után a konfidencia-intervallum vagy tartalmazza a becsülni kívánt sokasági paramétert vagy nem.  Amennyiben a mintavételt újra és újra megismételnénk, és elkészítenénk a konfidencia-intervallumokat, az esetek (1-α) %- ában a sokasági jellemző a konfidencia-intervallumon belül lenne.

Intervallumbecslés – várható érték  Normális el. M(  )= , D(  )=  0 ismert n elemű FAE mintából számított számtani átlaggal becsüljük Normális eloszlás (Mintavételi eloszlás)

Kvantitatív módszerek Várható érték (  ) becslése 2  -ás szabály f(x) 95,44%  -2  0 /  n  +2  0 / n 

Kvantitatív módszerek Várható érték (  ) becslése  

 Ha a sokaság elméleti szórása (σ 0 ) ismert, akkor az átlag mintavételi eloszlása alapján tetszőlegesen kicsiny α>0 számhoz meghatározható olyan z α/2 mennyiség, hogy  Minél nagyobb az 1-α=ε megbízhatósági szint, annál szélesebb intervallumot kapunk.  Az intervallum hossza függ a mintanagyságtól és a sokasági szórástól.  A konfidencia- intervallum sugarát adott megbízhatósági szinthez tartozó maximális hibának nevezzük.

Várható érték egyoldali becslése Gazdaságstatisztika Csak a konfidencia-intervallum felső határának becslése: Csak a konfidencia-intervallum alsó határának becslése:

Intervallum szélessége Sokasági szórás Mintaszám Megbízhatósági szint 

Példa Egy gép 1000 grammos kávékivonatot tölt. A töltősúly ellenőrzésére 9 elemű véletlen mintát vettek a termelésből, és az alábbi nettó töltési tömegeket mérték grammban: 990, 1004, 996, 1000, 999, 1005, 997, 1001, 1000 A gép által töltött tömeg normális eloszlású valószínűségi változó 4,5g szórással. Határozzuk meg 95%-os megbízhatósággal a termékek várható értékének konfidencia intervallumát! Megoldás: n=9

 =0,95   =0,05  kétoldali becslés:  /2=0,025  z  /2 =1,96 Gazdaságstatisztika Példa Ez azt jelenti, hogy 95%-os megbízhatósági szinten a gép által töltött tömeg várható értéke 996,1711 gramm és 1002,051 gramm között van.

Példa Tegyük fel, hogy a töltési technológiát úgy kell beállítani, hogy a töltősúly hosszabb távon ne haladja meg az 1002 grammot. A minta alapján – 95%-os megbízhatósággal – teljesíti-e ezt a feltételt a töltőgép? Megoldás: egyoldali konfidencia intervallum n=9  =0,95   =0,05  egyoldali becslés  z  =1,645 Gazdaságstatisztika 95%-os megbízhatósággal a gép teljesíti a technológiai elvárást.

Várható érték becslése – ismeretlen alapsokasági szórás  Feltétel: a sokaság normális eloszlású, de nem ismerjük sem a várható értéket (μ-t), sem a sokasági szórást (σ 0 -t).  Az átlag továbbra is normális eloszlású  Az ismeretlen alapsokasági szórás (σ) becslésére a korrigált tapasztalati szórást használjuk fel (torzítatlan becslés.)  helyett Student eloszlású valószínűségi változó ν=n-1 szabadsági fokkal. Kvantitatív módszerek

Példa Tegyük fel, hogy az előző töltőgépes példánál nem ismerjük az elméleti szórást, de továbbra is tudjuk, hogy a töltési tömeg normális eloszlással írható le. A grammokban mért töltési tömegek: 990, 1004, 996, 1000, 999, 1005, 997, 1001, 1000 Adjunk becslést 95%-os megbízhatósági szinten a töltőtömeg várható értékére! Megoldás: n=9 A σ 0 nem ismert, becsülnünk kell a minta korrigált tapasztalati szórásával: Gazdaságstatisztika

Példa ε= 0,95   =0,05  kétoldali becslés:  /2=0,025  t  /2 =2,306 (DF=9-1=8) Gazdaságstatisztika Szélesebb intervallum! σ 0 nem ismert, becsültük σ 0 ismert

Sokasági arány becslése  A sokaságon belül egyetlen (mennyiségi vagy minőségi) ismérv szerint 2 csoportba soroljuk a sokasági elemeket.  A sokasági arány: P  Torzítatlan becslőfüggvénye: p = k/n Binomiális eloszlás M(p) = PD 2 (p) = P(1-P)/n Közelítjük normális eloszlással

Példa A Felvillanyozzuk Kft. napi termeléséből vett n = 200 elemű mintában a hibás égők száma 24 db. 95%-os és 99%-os megbízhatósági szint mellett adjunk intervallumbecslést a sokasági arányra! Megoldás: n = 200 p = 24/200 = 0,12  = 0,95   = 0,05  kétoldali becslés:  /2 = 0,025  z  /2 = 1,96 Gazdaságstatisztika 95%-os megbízhatósági szinten a sokasági arány, vagyis a hibás égők aránya 7,5% és 16,5% között van.

Példa  = 0,99   = 0,01  kétoldali becslés:  /2 = 0,005  z  /2 = 2,58 Gazdaságstatisztika α =1% 99%-os megbízhatósági szinten a sokasági arány, vagyis a hibás égők aránya 6,066% és 17,934% között van. α =5% Szélesebb intervallum!

Sokasági variancia becslése  σ 2 torzítatlan becslése: korrigált tapasztalati szórás  Ekkor: változó n-1 szabadsági fokú χ 2 eloszlású követ.  A χ 2 eloszlás: független standard normális eloszlású változók négyzetei összegének eloszlása.  Egy paramétere van: ν=n-1, ahol n az összegezendő egymástól független valószínűségi változók számát jelenti.  Csak pozitív értékeken értelmezzük, balra aszimmetrikus, a szabadságfok növelésével közelít a normális eloszláshoz.  Következmény: a konfidencia intervallum nem lesz szimmetrikus a pontbecslésre!

Sokasági variancia becslése Kvantitatív módszerek Normális el.  Normális el. M(  )= , D 2 (  )=  2 mintából becsüljük, s 2 s* 2 s 2 vagy s* 2 mintából becsüljük, s 2 s* 2 s 2 vagy s* 2  2 -eloszlású (Mintavételi eloszlás)  !! - csak pozitív értékekre értelmezett - nem szimmetrikus !! - csak pozitív értékekre értelmezett - nem szimmetrikus !!

Példa A Felvillanyozzuk Kft. karácsonyfaégőinek élettartamát n = 16 elemű mintából vizsgálva azt találták, hogy az élettartamok korrigált tapasztalati szórása 10 óra. Határozzuk meg az égők varianciájára, ill. szórására vonatkozó 95%-os konfidencia-határokat! Megoldás: n = 16 s* = 10 óra DF = n – 1 = 16 – 1 = 15  = 0,95   = 0,05  kétoldali becslés:  /2 = 0,025  1 –  /2 = 0,975 Gazdaságstatisztika 54,5 <  2 < 239,6 7,38 <  < 15,5 95%-os megbízhatósági szinten a sokasági szórás 7,38 és 15,5 óra között van.

Mintaszám meghatározása  Eddig feltételeztük, hogy rendelkezésünkre áll egy adott elemszámú minta: a minta alapján kiszámoltuk az elméleti paramétert adott valószínűséggel tartalmazó intervallum határait.  Fordítva is eljárhatunk: mekkora mintára van szükség, hogy egy adott pontosságot (Δ-t) elérjünk.  Adott Δ mellett megadható az n érték: Kvantitatív módszerek Δ

Példa Egy gép 1000 grammos kávékivonatot tölt. A töltősúly ellenőrzésére 9 elemű véletlen mintát vettek a termelésből, és az alábbi nettó töltési tömegeket mérték grammban: 990, 1004, 996, 1000, 999, 1005, 997, 1001, 1000 A gép által töltött tömeg normális eloszlású valószínűségi változó 4,5g szórással. Meghatároztuk 95%-os megbízhatósággal a termékek várható értékének konfidencia intervallumát. Mekkora mintára van szükségünk, ha a konfidencia intervallum sugarát felére kívánjuk csökkenteni?

Példa Megoldás: Gazdaságstatisztika

Példa Doboz töltőtömege (g)db Összesen60 Gazdaságstatisztika Egy élelmiszergyárban 1kg-os gyümölcskonzerveket csomagolnak automata töltőgéppel. A töltőtömeg eloszlása normálisnak tekinthető. A napi termelés ellenőrzésére 60 elemű véletlen mintát vettek. Az eredményeket az alábbi táblázat tartalmazza: Készítsünk 95%-os (majd 99%-os) megbízhatósággal becslést a töltőtömeg várható értékre, szórására, valamint az 1000 gramm alatti töltőtömegek arányára! A várható érték becslésekor, ha a mintát a maximális hibát a felére szeretnénk csökkenteni, mekkora mintaelemszámra lenne szükség?

Megoldás Várható érték becslése ε=0,95 – ismeretlen sokasági szórás, de n>30 Mi hiányzik hozzá? A standard normális eloszlás táblázatból: Gazdaságstatisztika Doboz töltőtömege (g)db Összesen60

Megoldás Gazdaságstatisztika 95%-os megbízhatósággal a töltőtömeg várható értéke 1000,994 gramm és 1007,006 gramm között van. Legyen most a megbízhatósági szint 99%. 99%-os megbízhatósággal a töltőtömeg várható értéke 1000,043 gramm és 1007,957 gramm között van.  SZÉLESEBB AZ INTERVALLUM!!!!

Megoldás  Most válaszoljuk meg a mintaelemszámmal kapcsolatos kérdést!  95%-os megbízhatóság mellett a maximális hiba (Δ):  99%-os megbízhatóság mellett a maximális hiba (Δ): Gazdaságstatisztika

Megoldás Szórás becslése ε=0,95 A chínégyzet eloszlás táblázat alapján (DF=59): Szórás becslése ε=0,99 Gazdaságstatisztika 95%-os megbízhatósággal a töltőtömeg szórása 9,998 gramm és 14,342 gramm között van. 99%-os megbízhatósággal a töltőtömeg szórása 9,516 gramm és 15,308 gramm között van.  SZÉLESEBB INTERVALLUM

Megoldás  Sokasági arány becslése ε=0,95  1000 gramm alatti töltések aránya a mintában:  Sokasági arány becslése ε=0,99 Gazdaságstatisztika 95%-os megbízhatósággal az 1000 gramm alatti töltőtömeg aránya 18,4% és 41,6% között van. 99%-os megbízhatósággal az 1000 gramm alatti töltőtömeg aránya 14,7% és 45,3% között van.  SZÉLESEBB INTERVALLUM

Megjegyzés  Mekkora mintaelemszámra lenne szükségünk, ha a sokasági arány becslésénél az intervallumot a harmadára kívánjuk csökkenteni?  95%-os megbízhatóság mellett:  99%-os megbízhatóság mellett: Gazdaságstatisztika