Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

TERMÉSZETTUDOMÁNYOK ALAPJAI/3 HŐTAN

Hasonló előadás


Az előadások a következő témára: "TERMÉSZETTUDOMÁNYOK ALAPJAI/3 HŐTAN"— Előadás másolata:

1 TERMÉSZETTUDOMÁNYOK ALAPJAI/3 HŐTAN
BALÁZS ZOLTÁN BMF, KVK, MTI 2009.

2 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika (klasszikus hőtan) A termodinamika fizikának az a tudo- mányága, amelyik azokat a jelensé- geket írja le, amelyekben a hőener- giának és a hőmérsékletnek meghatá- rozó szerepe van

3 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI A hőtan legfontosabb mennyiségei: - hőmérséklet: az SI mértékegység rendszerben alapmennyiség, hatására a testek térfogat változást mutatnak. Jele: T mértékegysége: K (Kelvin) definíciója: gázhőmérő által meghatározott A hőmérséklet állapot változó.

4 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI A hőtan legfontosabb mennyiségei: - nyomás: a nyomóerő és a nyomott felület hányadosa. Jele: p mértékegysége: N/m2 (pascal) definíciója: p=F/A, ahol A a nyo mott felület A nyomás állapotváltozó.

5 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI A hőtan legfontosabb mennyiségei: - térfogat: Jele: V mértékegysége: m A térfogat állapotváltozó. Az állapotváltozók (hőmérséklet, nyomás, térfogat) egyértelműen meghatározzák a termodinamikai rendszer állapotát.

6 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI A hőtan legfontosabb mennyiségei: - hőenergia: másként hő, vagy hő- mennyiség, a testek hőmérséklet vál- tozásához szükséges energia. Jele: Q mértékegysége: J (joule) definíciója: a testek hőmérséklet változásához szükséges energia. Q=CnΔT=cmΔT ahol C [J/molK] a molhő, c [J/kgK] a fajhő. A hőenergia nem állapotváltozó.

7 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Szilárd testek termodinamikája. Lineáris hőtágulás. Térfogat és alaktartó rendszer. l=l0(1+αΔT) ΔT=T-T0 ahol, l a test hossza a T hőmérsékleten l0 a test hossza a T0 hőmérsékleten T0 a referencia hőmérséklet T a vizsgálati hőmérséklet α a lineáris hőmérsékleti együttható

8 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Szilárd testek termodinamikája. Térfogati hőtágulás V=V0(1+βΔT) ΔT=T-T0 ahol, V a test térfogata a T hőmérsékleten V0 a test térfogata a T0 hőmérsékleten T0 a referencia hőmérséklet T a vizsgálati hőmérséklet β a térfogati hőmérsékleti együttható, β=3 α

9 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Folyadékok termodinamikája. Térfogati hőtágulás. Térfogattartó rendszer. V=V0(1+βΔT) ΔT=T-T0 ahol, V a test térfogata a T hőmérsékleten V0 a test térfogata a T0 hőmérsékleten T0 a referencia hőmérséklet T a vizsgálati hőmérséklet β a térfogati hőmérsékleti együttható, β=3 α

10 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Gázok termodinamikája. A három állapotváltozó mindegyike változhat, a vizsgálat során nagyon gyakran az egyiket állandó értéken tartjuk, így egyszerűbb a vizsgálat és a valóságot is ez gyakran leírja. - p=állandó, nyomástartó, vagy izobár rendszer V=V0(1+βΔT) β=1/273 [1/K] Gay-Lussac I. törvénye.

11 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Gázok termodinamikája V=állandó, térfogattartó, vagy izochor rendszer V=V0(1+βΔT) β=1/273 [1/K] Gay-Lussac II. törvénye.

12 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Gázok termodinamikája T=állandó, hőmérséklettartó, vagy izoterm rendszer pV=p0V0=állandó Boyle-Mariotte törvény

13 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Gázok termodinamikája. Az egyesített gáztörvény. A fenti három egyenlet figyelembevételével, ha mindhárom változó változik, akkor a rendszer az egyesített gáztörvény szerint vizsgálható: pV/T=p0V0/T0=állandó ahol a p0,V0, T0 a normál állapotú gáz jellemzői: p0=1,01 105Pa; T0=273,15K; V0, a normál állapotú gáz térfogata.

14 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Termodinamika Gázok termodinamikája. Az egyesített gáztörvény. A fenti egyenletet kis átalakításokkal további egyenletekként is megadhatjuk: pV/T=nR=állandó ahol, R az univerzális gázállandó, amely minden gáz esetén azonos: R=8,314J/molK, n a rendszerben található gáz anyagmennyi- sége.

15 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Anyagmennyiség: az SI rendszerben alapmennyiség: jele: n mértékegysége: mol definiciója: egy molnyi az, az anyag- mennyiség, amelyben ugyanannyi részecske van, mint 12g C12 –es szénizo- tópban, azaz NA=6, db/mol.

16 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Gázok termodinamikája. Az egyesített gáztörvény. A fenti egyenletet kis átalakításokkal további egyenletekként is megadhat- juk: pV/T=(m/M)R=állandó ahol, M az egy molnyi anyag tömege, a moltömeg, n a rendszerben található gáz anyagmennyisége.

17 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Gázok termodinamikája. Az egyesített gáztörvény. A fenti egyenletet kis átalakításokkal további egyenletekként is megadhatjuk: pV/T=Nk=állandó ahol, N a rendszerben található anyag részecskéinek száma k a Boltzmann állandó: k=1, J/K

18 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Gázok állapotváltozásai: -izobár állapotváltozás, p=állandó p1V1/T1=p2V2/T2 ahol p1=p2=p ezért V1/T1=V2/T2 Hőenergia hozzávezetése esetén nő a térfogat és a hőmérséklet, a gáz kitágul. Q=CpnΔT Cp az állandó nyomáshoz tartozó molhő Cp =((f+2)/2)R

19 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Gázok állapotváltozásai:

20 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Gázok állapotváltozásai: p=állandó V/T=áll

21 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Gázok állapotváltozásai: -izobár állapotváltozás, p=állandó

22 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika Gázok állapotváltozásai: -izochor állapotváltozás, V=állandó p1V1/T1=p2V2/T2 ahol V1=V2=V ezért p1/T1=p2/T2 Hőenergia hozzávezetése esetén nő a nyomás és a hőmérséklet. A gáz térfogati munkát nem végez, Wt =0J. Q=CVnΔT CV az állandó nyomáshoz tartozó molhő CV =(f/2)R

23 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika Gázok állapotváltozásai: -izochor állapotváltozás, V=állandó p/T=állandó

24 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Gázok állapotváltozásai:

25 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Gázok állapotváltozásai: -izochor állapotváltozás, V=állandó

26 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Gázok állapotváltozásai: -izoterm állapotváltozás, T=állandó p1V1/T1=p2V2/T2 ahol T1=T2=T ezért p1V1=p2V2=állandó Hőenergia hozzávezetése esetén nő a térfogat és a nyomás csökken, a gáz térfogati munkát végez Wt Q=nRTln(V2/V1) =Wt

27 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI -izoterm állapotváltozás, T=állandó

28 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Gázok állapotváltozásai:

29 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI -izoterm állapotváltozás, T=állandó

30 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Szöveges egyenletek Ha az ismert és ismeretlen mennyiségek közötti kapcsolatot szavakkal írjuk le, akkor „szöveges egyenletet” kapunk. A szöveges egyenletet átírjuk algebrai alakra, majd a szokásos módokon megoldjuk azt.

31 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Szöveges egyenletek Az egyenletetek felírása során a következő lépéseket célszerű követni: a./ Elsőrendű fontosságú a szöveg helyes értelmezése, ezért javasolt a szöveg megfogalmazása saját szavainkkal, és az így megfogalmazott szöveg jelentésének összehasonlítása az eredeti feladattal.

32 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Szöveges egyenletek Az egyenletetek felírása során a következő lépéseket célszerű követni: b./ A szövegben található ismeretlen mennyiséget, vagy mennyiségeket valamilyen betűvel jelöljük. Ha több kérdés van, akkor azokat a már felvett ismeretlenek segítségével próbáljuk meghatározni.

33 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Szöveges egyenletek Az egyenletetek felírása során a következő lépéseket célszerű követni: c./ A feladat ismert és ismeretlen mennyiségeit két egymással egyenlő értékű algebrai kifejezésbe írva, majd azokat az egyenlőség jelével összekapcsolva megkapjuk a szöveges egyenlet algebrai alakját. A felírt egyenletet megoldjuk.

34 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Szöveges egyenletek Az egyenletetek felírása során a következő lépéseket célszerű követni: d./ A feladat ismert és ismeretlen mennyi-ségeit két egymással egyenlő értékű al-gebrai kifejezésbe írva, majd azokat az egyenlőség jelével összekapcsolva meg-kapjuk a szöveges egyenlet algebrai alakját. A felírt egyenletet az ismert módok valamelyikével megoldjuk.

35 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Szöveges egyenletek Az egyenletetek felírása során a következő lépéseket célszerű követni: d./ A megoldott egyenlet gyökeinek helyességét a szöveges egyenlet alapján kell ellenőrizni, mert a felállított egyen-lettel való ellenőrzés csak az bizonyítja, hogy az egyenletet jól oldottuk meg, de ha hibás meggondolás alapján nem a szövegnek megfelelő egyenletet írtuk fel, az a szöveges egyenletre hibás eredményt ad.

36 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Feladat: 5kg 27 oC-os oxigén térfogata 1m3. Moltömege 32g/mol. a./ Mennyi munkával lehet térfogatát negyedére csökkenteni állandó nyomáson? b./ Mennyi munkával lehet térfogatát negyedére csökkenteni állandó hőmérsékleten? c./ Mennyi hő elvonásával lehet nyomását negyedére csökkenteni állandó hőmérsékleten?

37 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI A feladatban szereplő adatok rögzítése, átváltása Si mértékegységre: A térfogat V=V1=1m3 A megadott hőmérséklet t1=27oC nem SI mértékrendszerben adott, ezért át kell váltani: T1=t1+273=27+273=300K A tömeg SI-ben m=5kg A Moltömege MO2=32g/mol

38 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Első Kérdés: a./ Mennyi munkával lehet térfogatát negyedére csökkenteni állandó nyomáson? Ismeretlen mennyiség a munka, jele :W Fontos feltétel az, hogy a változások során a nyomás nem változik, tehát p1=állandó. A rendszerben csak a hőmérséklet és a térfogat változik. Ezek alapján a térfogati munka: Wt=p1*ΔV

39 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Első Kérdés: a./ Mennyi munkával lehet térfogatát negyedére csökkenteni állandó nyomáson? Ismeretlen mennyiség a munka, jele :W Fontos feltétel az, hogy a változások során a nyomás nem változik, tehát p=állandó. A rendszerben csak a hőmérséklet és a térfogat változik. Ezek alapján a térfogati munka: Wt=p1*ΔV=p1(V2-V1) A rendszert össze kell nyomni, tehát azt egy külső beavatkozó végzi.

40 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Első Kérdés: a./ Mennyi munkával lehet térfogatát negyedére csökkenteni állandó nyomáson? Wt=p1*ΔV=p1 (V2-V1) A képletben ismeretlen a p1, és a V2 elsőként ezeket kell meghatározni. V2 =V1/4=1/4=0,25m3 Felhasználjuk az egyesített gáztörvényt: pV/T=nR ahol: n az anyagmennyiség n=m/M=5kg/( kg/mol)=156,25mol R az univerzális gázállandó, amely minden gáz esetén azonos: R=8,314J/(mol*K)

41 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Első Kérdés: a./ Mennyi munkával lehet térfogatát negyedére csökkenteni állandó nyomáson? Ismét felhasználjuk az egyesített gáztörvényt és átalakítjuk azt: p1V1/T1=nR l: (*T1/V1) p1=nRT1/V1=156,25*8,314*300/1 p1=3,897*105Pa Most már a végzett munka meghatározható: Wt=p1(V2-V1)=3,897*105(0,25-1) Wt=-2,92*105J A negatív előjel azt jelenti, hogy a munkát a külvilág végzi. Tehát a külvilág által végzett térfogati munka Wt=-2,92*105J

42 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Második kérdés: b./ Mennyi munkával lehet térfogatát negyedére csökkenteni állandó hőmérsék-leten? Ismeretlen mennyiség a munka, jele :Wt Fontos feltétel az, hogy a változások során a hőmérséklet nem változik, tehát T1=állandó. A rendszerben csak a nyomás és a térfogat változik. Ezek alapján a térfogati munka: Wt=Q=nRT1*ln(V2/V1)

43 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Második kérdés: b./ Mennyi munkával lehet térfogatát negyedére csökkenteni állandó hőmérsék-leten? A T1=állandó.ezért a belső energia is állandó (U1=CVnT1) A rendszerben csak a nyomás és a térfogat változik. Ezek alapján a térfogati munka: Wt=Q=nRT1*ln(V2/V1) Wt=Q=156,25*8,314*300*ln(0,25/1) Wt=-5,4*105J A negatív előjel azt jelenti, hogy a munkát a külvilág végzi. Tehát a külvilág által végzett térfogati munka Wt=-5,4*105J

44 A TERMÉSZETTUDOMÁNYOK ALAPJAI
Termodinamika A TERMÉSZETTUDOMÁNYOK ALAPJAI Termodinamika


Letölteni ppt "TERMÉSZETTUDOMÁNYOK ALAPJAI/3 HŐTAN"

Hasonló előadás


Google Hirdetések