Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Szenzorok főbb típusai

Hasonló előadás


Az előadások a következő témára: "Szenzorok főbb típusai"— Előadás másolata:

1 Szenzorok főbb típusai
SENSOR Szenzorok főbb típusai - piezo ellenállás ill. feszültség - kapacitív - optoelektronikus - mágneses - mikrohullámú (radar) - lézer - akusztikus ill. ultrahangos VLSI

2 Előállítási technológiák
SENSOR Előállítási technológiák - Hagyományos, diszkrét elemekből - szilicium planar, System-on-Chip (SoC) - MEMS (Micro-Electro-Mechanical-System) - vékonyréteg techn. - vastagréteg techn. - mikrohullámú, optikai, stb. VLSI

3 Intelligens szenzor blokksémája
Jel elő-készítő A/D átalakító RF Adatátvitel Jelfeldolgozó Processzor Adat memória Program memória VLSI

4 Szenzorok intelligenciája
SENSOR Szenzorok intelligenciája - kompenzálás, kalibrálás - analóg-digitál átalakítás - jelfeldolgozás, szűrés, tömörítés - tárolás - adatátvitel - programozhatóság, adaptivitás, öntanulás - Ön-teszt (BIST, Built-In Self Test) VLSI

5 Implantált (hordozható) szenzorok Alapprobléma: fogyasztás
SENSOR Implantált (hordozható) szenzorok Alapprobléma: fogyasztás - szakaszos (sleep) üzemmód - optimalizált algoritmusok külső energiaforrások (transzponderek) rádiófrekvenciás átvitel …távolságok ...? VLSI

6 Micro-Electro-Mechanical-System (MEMS) technológiák
SENSOR Marással eltávolított alapkristály (üreg) Leválasztott poliszilicium réteg Eltávolított oxidréteg Cantilever Cantilever Szilicium szubsztrát Szilicium szubsztrát Felületi MEMS technológia Tömbi MEMS technológia viszonylag nagyobb méretek integrálhatóság ? igen kis méretek jól integrálható VLSI

7 Integrálható tapintásmérő
Mechanika Integrálható tapintásmérő - piezorezisztív jelátalakítás - pórusos Si alapú mikromechanikai megmunkálás  elsőként - a felületi és tömbi mikromechanika előnyeinek kombinációja - egykristályos, integrálható érzékelő elem - újdonság 100m VLSI

8 MEMS lebegő hidas érzékelő kapcsolási rajza
Mechanika VDD V1 Változó (megnyomott) ellenállások Referencia ellenállások GND VDD VDD V2 V4 Lebegő híd 6 kivezetés/híd V3 VDD GND VLSI

9 Tapintásmérő jel-erősítő Tapintó-érzékelő a panelen VCC Sín VCC
Mechanika VCC Sín R2 RREF Tapintásmérő jel-erősítő R1 U2 Uk U1 RMÉRŐ VCC dekóder Érzékelő PAD helipot Tapintó-érzékelő a panelen VLSI

10 MOS kapacitív érzékelő
Oxid-kapacitás Polymer-kapacitás (veszteséges) polymer Mérési pont GND SiO2 fémcsíkok n-szilícium VLSI

11 ISFET (Ion Sensitive FET) térvezérelt érzékelő tranzisztor
Kémia ISFET (Ion Sensitive FET) térvezérelt érzékelő tranzisztor UG Folyadék-tér Referencia-elektróda US UD SiO2 n-source n-drain p-szilícium csatorna A tranzisztor ID(UGS)-görbéje hidrogén hatására balra (-U) tolódik el VLSI

12 ChemFET térvezérelt kémiai érzékelő tranzisztor
Referencia elektróda Folyadék-tér UG ion-szelektív áteresztő membrán hydrogel US UD SiO2 n-source n-drain p-szilícium csatorna A tranzisztor ID(UGS)-görbéje hidrogén hatására balra (-U) tolódik el VLSI

13 Differenciális (két tranzisztorból álló) ChemFET érzékelő
Kémia Differenciális (két tranzisztorból álló) ChemFET érzékelő Mérendő gáz Szelektív védőburok ChemFET Referencia ChemFET VLSI p72

14 Multi-szenzoros elrendezés
Kémia Multi-szenzoros elrendezés Ablak Szigeteletlen, lebegő gate S1 D1 S2 D2 S3 D3 Minimum 3 szerves anyag érzékelése VLSI

15 Gázérzékelés „mikro-fűtőlap” (hotplate) segítségével
Kémia Gázérzékelés „mikro-fűtőlap” (hotplate) segítségével Vastag-réteg film SnO2 ellenállás Hőmérséklet-érzékelő E1 mérőelektróda E2 mérőelektróda Szigetelő membrán p-szilícium szubsztrát Poliszilícium fűtőellenállás n-szilícium sziget Hotplate hőmérséklet: oC VLSI

16 Érzékelő octagonális (a) és circuláris (b) „hotplate”
Kémia Érzékelő octagonális (a) és circuláris (b) „hotplate” fűtőelemmel, hőszenzorral és elektródákkal Változó ellenállás VLSI

17 A 32-csatornás „szita” érzékelő vázlata
Neural Elvágott és a szitán átnövő, regenerálódott idegszálak Külső adótekercs On-chip elektronika Külső adótekercs C-tároló Adó vevőtekercs Controller C-hangoló Szilícium szalagkábel C-buffer Üveg tokozás Szilícium szita Elektróda (MEMS) VLSI

18 A 32-csatornás „szita” érzékelő külső egysége
Neural Burkoló detektor Vezérlő bemeneti jel Adó Órajel- generátor CLK Adótekercs Mért jel Adat-kódoló VDD Feszültség- szabályozó vevőtekercs C-hang. GND VLSI

19 3.3. A 32-csatornás „szita” érzékelő belső egysége
Neural (Egyidejűleg két, tetszés szerint kiválasztott elektróda potenciálját méri) 2:1 Analóg multiplexer Csatorna- szelektor Elektródák Power on reset Vezérlő- jel Controller CLK Előerős. Áram- fesz. konv. Mért jel VDD Előerős. A/D konverter GND IREF VLSI

20 A 32-csatornás érzékelő adatátviteli protokollja
Neural A 32-csatornás érzékelő adatátviteli protokollja Start 1 1 Start 1 Power up Write 10-bit csatorna cím Read 16-bit digitalizált érték ( 2 x 5-bit → 2 elektróda a 32-ből) Chip: 3m BiCMOS techn., 4 x 6 mm, 5000 tranzisztor, CLK=2 MHz, VDD=5,2V, P  90mW VLSI

21 Tipikus kétutas mérőrendszer felépítése
Neural ASK dekóder 250 ksample/s 1,4mW / 3V Clock recovery MUX 10bit A/D Táp E-oszt. meghajtó Control Logika Power on Reset Regiszterek Endekóder 4 MHz 60 kb/s 6-15V 2 mW Keverő Oszcillátor Aktív transmit VLSI

22 Analóg MOS-kapcsoló helyettesítőképe
Unyitó Ube Uki Unyitó rON nMOS Unyitó G pMOS Cg s Cg d rsd K S D Uki Ube VTn VTp 5V Ube Cs b Cd b C terhelő eredő RC=integráló tag ! Spektrum…! VLSI

23 Chopper-stabilizált erősítő
Analóg Chopper-stabilizált erősítő Főerősítő Ube Uki Hibaképző és kompenzáló K Chopper stabilizált mellékerősítő VLSI

24 Kétfokozatú CMOS műveleti erősítő
Analóg 0,25m techn. λn=0,02/V λp=0,04/V γ=0,4 [V-1/2] VTn=0,48V VTp=-0,48V G=70 dB GBW=75MHz φm=55o P=0,72mW T1 T2 T8 T6 T5 T4 T3 T7 U+ U- 100A 200A 1,14V 50A 100/0,6 1,8V 0,64V 160/0,8 40/0,8 160/0,4 200/0,6 2pF 300Ω Uki 1,2V VLSI

25 On-chip thermosztát Faichild, 1964 Analóg Ifűtő USzab IREF Szabályzó
Hőmérséklet-mérő Szilícium-dióda „fűtő”-tranzisztor Ifűtő Differenciál-erősítő Szabályzó áramkör Faichild, 1964 VLSI

26 Egylépéses áramösszegző D/A
D/A conv VCC Virtuális föld R1 Sín  I - Sín Iref Uki + K0 K1 K7 T1 I0 2.I0 T8 128.I0 Di Di K-kapcsoló -USS å = I R U ki 1 VLSI

27 Áramok kapacitív tárolása
D/A conv Áramok kapacitív tárolása +U ITÁR + - C -U VLSI

28 Áramkapcsolós, ciklikusan működő A/D átalakító
D/A conv Φ3 Φ1 Φ2 T3 IBE +V - + IREF T1 T2 C1 C2 C3 S d (Φ1+ Φ2) + Φ4 -V Φ1+ Φ3 Φ2+ Φ3 Áram- komparátor 2 1 3 2IBE Ha 2IBE>IREF, akkor d=1 4 d VLSI VLSI áramkörök

29 I3 „átmásolása” C1 és C2-be….
D/A conv Ha IX>IREF, akkor d=1 +V Φ3 C3 I3 T3 d - + Φ1+ Φ3 Φ2+ Φ3 Áram- komparátor d (Φ1+ Φ2) + Φ4 I1 I2 T1 T2 Φ2 IREF C1 C2 -V Φ1 VLSI VLSI áramkörök

30 Áramkapcsolós A/D további lépései
D/A conv +U 2. lépés: d=1, S=0 I3= 2IBE I1=I2=2IBE-IREF I3=(I1+I2)=4IBE-2IREF 4IBE-2IREF>IREF → IBE>3/4 IREF 3. lépés: I1=I2=I3-IREF=4IBE-3IREF I3=(I1+I2)=8IBE-6IREF 8IBE-6IREF>IREF → IBE>7/8 IREF I - + C -U VLSI

31 VLSI áramkörök megvalósitási lehetőségei
PLA Szempontok: - sebesség - fogyasztás - költségek, ár - tervezés, korrekció Költség Programozható (Gate-array, SoC) Cellás tervezés Full-custom (tipikus: mobil) Darabszám 1000 10,000 100,000 VLSI

32 Programozott áramkörök programtároló elemei
FPGA Q n p VCC Statikus flip-flop EEPROM/FLASH Antifuse Tunnel Drain Control Gate Source Floating Szigetelő VLSI

33 EEPLD „Makrocella” felépítése
FPGA Output Enable Preset EEPROM cella Programozható flip-flop D P Q C inverz I/O pin sum Prog. Prog. products Cella órajel Inputs Clear Global órajel Bemenetekről Makrocellákról I/O-ról VLSI

34 EPLD blokkvázlata (Altera)
FPGA Global Clock Programmable Interconnect Array (PIA) Macrocell I/O Macrocell I/O Macrocell I/O Macrocell I/O Macrocell I/O Macrocell I/O VLSI

35 PASS-TRANZISZTOROS ÖSSZEKÖTTETÉSEK (XILINX)
FPGA PASS-TRANZISZTOROS ÖSSZEKÖTTETÉSEK (XILINX) CLB SWITCH MATRIX - Programozható Szomszédos cellák között fix - Globális vonalak Long-range vonalak VLSI

36 ACTEL-TEXAS antifuse memória-elem
FPGA ACTEL-TEXAS antifuse memória-elem Poliszilicium vezeték SiO2 szigetelő Oxid-Nitrid-Oxid (ONO) ultravékony szigetelő n-adalékolt réteg Rnormal > 10 MΩ Rátütött < 300Ω 18V VLSI

37 System-on-Chip (SoC) áramkörök
FPGA System-on-Chip (SoC) áramkörök 8-bites mikrocontroller Dual-port memória FPGA VLSI

38 Atmel System-on-Chip (SoC) áramkör
FPGA 50K kapu, 3V, 18Kbit, 100MHz, 384I/O. vezetékek a memória és C felé I/O cellák cella Vertikális sínek: 5 x 1 local+2expr. Horizontális Sínek: 5 x 1 local + 2 express Csatlakozási lehetőség h/v Segment = 4 x 4 cella 32 x 4 bit memória Local: 4cella, Expr:8 cella VLSI I/O cellák

39 Atmel System-on-Chip (SoC) áramkör
FPGA NW N NE Express line W E Local line Cella Cella Cella Kapcsolódási pontok SW S SE Cellák közti közvetlen kapcsolat VLSI

40 8-bites microcontroller blokksémája
Proc. Interrupts XTAL Mód Reset Analóg bemenetek Interruptok Órajel System control A/D konverter Vcc,a Vss,a 3 Timer1 Timer 2 Watchdog Perifériás int. Soros interfész I/O Rx CPU RAM Tx Event EPROM Data EEPROM PWM Event PWM Vcc Port A Vss 8 8 8 8 8-bites microcontroller blokksémája Data Address low Address high Control VLSI

41 Mikrokontrollerek főbb jellemzői
Proc. Mikrokontrollerek főbb jellemzői von Neumann, vagy Harvard-típusú felépítés Sebesség (egy művelet végrehajtási ideje) Program-memória típusa (Flash) és mérete On-chip RAM mérete Külső memória-bővítés Fogyasztás aktív üzemben Kisfogyasztású, takarékos üzemmódok Utasítás-készlet (RISC) On-chip A/D ill. D/A átalakító Interfészek (I2C, CAN, USB) Extra szolgáltatások VLSI

42 ”Energia-takarékos” (Standby) üzemmódok
Proc. ”Energia-takarékos” (Standby) üzemmódok Különböző, nem egységes elnevezések: Power-save, Standby, Sleep, stb. Módok: 1. Egyes egységek leállítva, program szerint („Half active”) 2. Sleep: csak az „awake”-figyelés működik 3. Mint „Sleep”, de közben számolja az időt és időre visszatér 4. Csak interfész-t figyel 5. „HALT” leállítja az órát, minden leáll – reset-tel vagy külső órával indítható újra 6. Sub-clock (NEC találmány): 30kHz-es clock-ra vált át. VLSI

43 Timer/Counter egység Proc. Esemény bemenet 16-bit capture/ 8-bit
SW Reset Capture PWM 16-bit capture/ compare reg. compare 16-bit számláló 8-bit előszámláló Esemény bemenet Flag+Int. Overflow Ext. reset VLSI

44 Az RS-232 soros átviteli szabvány
Interface Az RS-232 soros átviteli szabvány LSB 1 2 3 4 5 6 7 START BIT STOP BIT Mintavétel 33% és 66%-nál VLSI


Letölteni ppt "Szenzorok főbb típusai"

Hasonló előadás


Google Hirdetések