Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
1
Megyei Matematika verseny
Tiszaparti Gimnázium
2
Róka Sándor előadása nyomán
A következő pár feladat során a lehetetlenséget fogjuk megvizsgálni az algebrán belül. A következő feladatokkal találkozhatunk számos matematika versenyen, megoldásuk csak egy kis logikát igényel.
3
Miért nem írható fel 101 két prímszám összegeként?
A 101 páratlan szám. Ez egy páros és egy páratlan szám összegére bomlik. De: egyetlen páros prím szám van a 2. A 101-et a 2 és a 99 összegére kell bontani, viszont a 99 nem prím szám, mert az 9-cel osztható.
4
Miért nem lehet a 6x+15y=14 egyenletet megoldani az egész számok körében?
A bal oldalunk biztosan osztható 3-mal bármilyen x és y érték mellett, a jobb viszont nem. És ezért nem lehet egyenlő!
5
Miért nem lehet ? Mert irracionális szám, vagyis nem írható fel két egész szám hányadosaként. A jobb oldat viszont racionális szám, ezért a két oldal sosem lesz egyenlő.
6
Miért nem lehet az első kilenc prímszámból 3
Miért nem lehet az első kilenc prímszámból 3*3-as bűvös négyzetet készíteni? Az első kilenc prímszám: 2,3,5,7,11,13,17,19,23. Azért nem lehet, mert ahova a 2-est írjuk ott az összeg páros lesz, a többinél pedig páratlan!
7
Reméljük kis ízelítőnkkel közelebb hoztuk a matematika tudományát!
Köszönöm a figyelmet!
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.