Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Genotoxicitás Genotoxicitási tesztek Bakteriális reverz mutáció teszt

Hasonló előadás


Az előadások a következő témára: "Genotoxicitás Genotoxicitási tesztek Bakteriális reverz mutáció teszt"— Előadás másolata:

1 Genotoxicitás Genotoxicitási tesztek Bakteriális reverz mutáció teszt
In vitro mikronukleusz teszt

2 A genotoxicitás szintjei
Kromoszóma típusú mutációk (szerkezeti, számbeli változás) Pontmutációk egy vagy néhány bázis: - cseréje - kiesése - beékelődése silent, missense, nonsense frame-shift, leolvasási keret eltolódása A genotípus megváltozása nem mindig vezet a funkció (fenotípus) megváltozásához (silent=csendes mutációk, mutáció nem kódoló régióban) A mutáció lehet: káros, semleges, előnyös

3 Mutagén – Karcinogén a mutagén fizikai vagy kémiai ágens, mely növeli a mutációk képződésének gyakoriságát indukált mutáció a mutagének által okozott változások a genetikai állományban a halálozások oka a civilizált világban 40%-ban rákos daganat - a rákos megbetegedések közel 90%-át a környezetünket szennyező mutagének okozzák - a mutagén vegyületek nagy része rákkeltő (karcinogén) is !!!!!!!!!!!! - évente néhány ezer olyan vegyületet állítanak elő, amelyek korábban nem léteztek a Földön (gyógyszer alapanyagok, növény- vagy faanyagvédő szerek, élelmiszer-adalék, kozmetikum, háztartási vegyszer stb.) a mutagének és a karcinogének közötti szoros kapcsolat szükségessé teszi a környezetünkben lévő mutagén vegyületek kimutatását

4 Spontán mutációk okai :
a bázisok alternatív formái (keto/enol, amino/imino tautomerizáció) a replikáció során a szálak elcsúszása következtében kisméretű inszerciók és deléciók keletkezése - a DNS szerkezeti változásai (depurináció és deamináció, amelyek a bázisok párosodási tulajdonságait változtatják meg)

5 Tautomerizáció Normál bázispárosodás (keto és amino formák)
A guanin enol formája timinnel, az adenin imino formája pedig citozinnal képes H-híd kialakítására. A citozin imino formája adeninnel, a timin enol formája pedig guaninnel képes H-híd kialakítására. A párosodási hiba a replikáció során az újonnan szintetizált szálban megmarad és állandósul

6 Indukált mutációk külső okokból származó mutációk
vegyszerek számos módon okozhatnak mutációkat: bázis analógok a DNS-be beépülnek, de nem a megfelelő bázissal párosodnak alkiláló, deamináló szerek, oxidáló anyagok a DNS bázisok szerkezetét és párosodási tulajdonságait megváltoztatják interkaláló szerek a bázisok közé ékelődnek és nukleotid inszerciót vagy deléciót okoznak

7 Bázis analógok a természetes bázisokhoz hasonló szerkezetűek, a DNS polimeráz a kettős spirálba beépíti pl. 5-brómuracil (5BU) timin analóg adeninnel és guaninnal is (!) képes párosodni tranziciót okoz T-A>5BU-A>5BU-G>C-G C-G>5BU-G>5BU-A>T-A 2-aminopurin (2AP) adenin analóg a timinen kívül citozinnal is (!) képes párosodni tranziciót okoz T-A>T-2AP>C-2AP>C-G C-G>C-2AP>T-2AP>T-A

8 Alkiláló szerek alkil (-CH3, -CH2-CH3) csoportokat építenek a nukleinsavak bázisaira és azokat módosítják pl. etil-metánszulfonát (EMS) főként a guanint, kisebb mértékben a timint módosítja a 6-etilguanin timinnel párosodik, ami C-G>T-A tranzíciót eredményez a 4-etil-timin a guaninnal párosodik, és így T-A>C-G tranzíció jön létre

9 Deamináló szerek a spontán deamináción kívül különböző vegyszerek is képesek a bázisok amin csoportjait támadni pl. salétromossav a citozint, az adenint és a guanint támadja citozin uracil, mely a következő replikáció során adeninnel párosodik és C-G > T-A tranziciót okoz adenin hipoxantin, ami citozinnal párosodva T-A > C-G tranziciót eredményez guanin xantin, ez elsősorban citozinnal, de kisebb mértékben timinnel is párosodva C-G > T-A tranziciót hoz létre hidroxilamin a citozin amino csoportját támadja, és hidroxilaminocitozin keletkezését okozza a hidroxilaminocitozin adeninnel párosodik, és C-G > T-A tranziciót okoz

10 Interkaláló vegyületek
- általában gyűrűs vegyületek, melyek térkitöltése a bázispárokhoz hasonlít - a DNS kettős spirálban egymás melletti bázispár közé képesek beépülni - a beépülés a kettős spirál alakját torzítja, ami azután a replikáció során egy nukleotid kiesését vagy beépülést okozza pl. proflavin akridin sárga etidium-bromid dioxin

11 A genotoxicitás mérése
többféle, nemzetközileg elfogadott tesztrendszer: bakteriális tesztek (Salmonella typhimurium, Esherichia coli) eukarióta egysejtűek (pl. Saccharomyces cerevisiae, Aspergillus nidulans) élesztőgomba penészgomba rovarok (ecetmuslica Drosophila melanogaster) gerincessejt-vonalak (humán és egyéb emlős sejtvonalak) növények (lóbab, árpa, vöröshagyma) in vivo (egér, hörcsög, patkány)

12 Alternatív (= in vitro) genotoxicitási tesztek
állatkísérletek számának csökkentése gyors (short term study) - költséghatékony Végpontok: pontmutáció DNS törés repair (DNS szintézis NEM az S fázisban) kromoszóma aberrációk

13 kb. 30.000.000.000 (3x1010) sejtünk van . . . (~3x107/nap/sejt)
Mutációk detektálása - a fajok nemzedékről nemzedékre mutatott állandósága arra utal, hogy a mutációk bekövetkezése ritka esemény a valóságban azonban a megfigyelhetőnél jóval több mutáció keletkezik körülbelül 1,000,000,000,000,000,000 (1018) DNS sérülés minden felnőtt emberben naponta! kb (3x1010) sejtünk van (~3x107/nap/sejt) mivel leggyakoribbak a recesszív mutációk, a legtöbb új mutáció észlelését a dominancia megakadályozza az új mutációk észlelése ezért a legegyszerűbb a haploid szervezetekben diploidokban a mutációk kimutatására speciális rendszerek szükségesek - a mutációk gyakorisága alacsony, ezért mutánsokat nagy egyedszámú populációból lehet kimutatni

14 Bakteriális reverz mutagenitási teszt
Kidolgozója, Bruce Ames után AMES teszt Validált (OECD Guideline 471) Pontmutációk észlelésére alkalmas Több humán genetikai betegség pontmutációkra vezethető vissza. Baktérium törzsek: auxotróf mutánsok Salmonella typhimurium: his- : hisztidint és biotint igényel Escherichia coli: trp- : triptofánt igényel - nem képesek minimál táptalajon növekedni megnövelt mutációs érzékenység: megnövekedett sejtfal áteresztő képesség DNS hibajavító rendszer kiküszöbölése metabolikus aktiválás kell: S9 frakció : patkány májából készült enzimkivonat a baktériumok nem rendelkeznek oxidatív metabolizáló enzimrendszerrel Nagy populációban bekövetkező ritka mutációs esemény detektálására alkalmas

15 A baktériumok által képzett telepek
Salmonella E. coli

16 Salmonella typhimurium
his- mutánsainak reverzióját figyelik a tesztelendő vegyületek hatására Reverzió = back mutáció his+ Hisztidint szintetizál Hisztidinmentes tápközegben életképes his- Hisztidin bioszintézisére képtelen Csak hisztidint tartalmazó tápközegben életképes Escherichia coli trp- mutánsainak reverzióját figyelik a tesztelendő vegyületek hatására trp- Triptofán bioszintézisére képtelen Csak triptofánt tartalmazó tápközegben életképes trp+ Triptofánt szintetizál Triptofánmentes tápközegben életképes Reverzió = back mutáció

17 A teszttörzsek jellegzetességei
Különböző típusú his mutációkat tartalmaznak, ezért a mutáció reverziója történhet: bázispár szubsztitúcióval frame-shift segítségével különböző hatásmechanizmusú mutagén vegyületek mutathatók ki, azaz információt nyújt a genotoxikus anyagok által előidézett mutációk típusáról

18 A kísérlet kivitelezése

19 S9 – patkány májából készült enzimkivonat
A kísérlet kivitelezése S9 – patkány májából készült enzimkivonat S9-et adagolva modellezni lehet az emlősökben lezajló enzimatikus reakciókat, így a bakteriális géntoxikológiai tesztekből következtethetünk a szennyezőanyagok magasabb rendű szervezetekre gyakorolt hatására

20 Pozitív kontroll ellenőrzése

21 Az eredmények értékelése
A kísérleti anyag mutagénnek tekinthető, ha: A kísérleti anyaggal kezelt lemezek revertánsszámai a kontroll lemezek revertánsszámaihoz képest koncentrációfüggő növekedést mutatnak A revertánsszámok reprodukálható, biológiailag jelentős növekedést mutatnak legalább egy koncentrációcsoportban, legalább egy baktériumtörzsnél metabolius aktiváló rendszer hozzáadásával vagy anélkül Törzsek: TA 1535, TA100, TA98, TA 1537 és TA 102 vagy E. coli WP2uvrA Biológiailag jelentős: törzsenként változik (2-szeres, 3-szoros) Statisztikai értékelés nem szükséges

22 Továbbfejlesztett Ames teszt (Ames II)
96 lukú mikrotitráló lemezen 6 törzzsel (TAMix) végezhető egyszerre pH indikátor festék a tápközegben (brómkrezol lila) A hisztidinmentes tápközegben szaporodó (revertált) baktériumok savasítják a tápközeget Lila: nem mutáns Sárga: back-mutáns

23 In vitro mikronukleusz teszt
Validált (OECD Guideline 487) Kromoszóma mutációk kimutatására alkalmas Kb 80% egyezés a kromoszóma aberráció teszttel, érzékenyebb, olcsóbb, gyorsabb Mikronukleusz: a sejtmagnál kisebb méretű, membránhatárolt DNS darabok, amelyek a citoplazmában jelennek meg a sejtosztódás zavara esetén

24 In vitro mikronukleusz teszt
Citotoxikus ágensre adott sejtválasz:

25 In vitro mikronukleusz teszt
Citotoxikus ágensre adott sejtválasz:

26 In vitro mikronukleusz teszt
- acentrikus kromoszóma fragment – klasztogén anyag - centromérral rendelkező fragment – aneugén anyag (a) a mikronukleusz acentrikus kromoszóma fragmensből származik (b) a mikronukleusz egész kromoszómát tartalmaz A klasztogén anyagok törést okoznak a DNS-ben, így az osztódás során kromoszóma fragmentek veszhetnek el, vagyis mikronukleusz képződhet belőlük. Az aneugén anyagok olyan változást okoznak a sejtosztódásnál, ami aneuploidiához vezet. Az aneuploidia a normális diploid kromoszómaszámtól való eltérés, vagyis például egy teljes kromoszóma elvesztése, avagy mikronukleusszá való alakulása.

27 A mikronukleusz képződés módjai

28 A mikronukleusz képződés módjai

29 A mikronukleusz képződés módjai
A genetikai anyag a sejtmembrán felé áramlik. Ezek szerint a mutagén anyaggal való expoziót követően először a sejtmag alakja változik meg, bimbózni kezd, majd a sejtmagból kizárt DNS darabkák mikronukleusz formát öltenek, és ezt követően még a sejtből is kizáródhatnak mini sejt formájában. A: exponált sejt B: metafázis C: poliploid metafázis D: poliploid sejtmag E: szabálytalan sejtmag F: bimbózó sejtmag G: szabálytalan sejtmag és mikronukleusz H: szabálytalan sejtmag és mini sejt

30 In vitro mikronukleusz teszt
A kísérlet kivitelezése sejtek felszaporítása kísérleti anyag koncentráció sorával való kezelés, kontrollok rátenyésztés citokelazinB hozzáadásával a tenyésztés terminálása kicseppentés, festés, fedés A kísérlet értékelése mikronukleált binukleáris sejtek összes sejthez való viszonyítása morfológiai kritériumok: MN<sejtmag/3 jól szeparált, nem bimbózó azonos festődési intenzitás a sejtmaggal


Letölteni ppt "Genotoxicitás Genotoxicitási tesztek Bakteriális reverz mutáció teszt"

Hasonló előadás


Google Hirdetések