Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Hasonlóságelemzés, avagy a fejlettség mérésének csapdái

Hasonló előadás


Az előadások a következő témára: "Hasonlóságelemzés, avagy a fejlettség mérésének csapdái"— Előadás másolata:

1 Hasonlóságelemzés, avagy a fejlettség mérésének csapdái
MTA Jövőkutatási Bizottság: II. Nemzetközi Konferencia, 2002. Lillafüred Pitlik László, SZIE Gödöllő

2 Pitlik László, SZIE Gödöllő
Áttekintés Bevezetés: Alapozó gondolatok a hasonlóságról Esettanulmányok tanulságai Szakértői rendszerek DEA Stocknet Joker / playometria Összegzés: A hasonlóságelemzés esélyei és korlátai Pitlik László, SZIE Gödöllő

3 A hasonlóság aspektusai I.
Az előadás címének és a konferencia címének kapcsolatáról: A (gazdasági) fejlődés, mint folyamat fejlettségi állapotok sorozatán keresztül realizálódik. Az egyenlőtlenség ebben a kontextusban pedig nem más, mint (térben és/vagy időben összemérhető) állapotkülönbségek. Állapotok összehasonlítására a hasonlóságelemzés szolgál. Ennek módszerei sokszínűek, hiszen szinte a teljes tudományos arzenál kötődik valamilyen szinten a hasonlóság fogalmához. Pitlik László, SZIE Gödöllő

4 A hasonlóság aspektusai II.
Két objektum (állapotsorozat) soha nem lehet azonos (vö. kétszer nem lehet ugyan abba a folyóba lépni), tehát csak hasonlóság van. A „nem szignifikáns” különbség soha nem azonosság… Alapkérdés: három állapotsorozat (objektum) közül melyik kettő hasonlóbb egymáshoz? Dilemma: Hogyan is kellene mérni a hasonlóságot? Pitlik László, SZIE Gödöllő

5 A hasonlóság aspektusai III.
A hasonlóság mérése az ábrázolási skálák szempontjából: Nominális skála (Miért pirosabb a kék, mint a zöld?) Rangsor skála (A 2. helyezett majdnem 1., vagy majdnem 3.?) Metrikus skálák (Hogyan lehet több állapot távolságát egyetlen célzott hasonlósági rangsorrá transzformálni?) Pitlik László, SZIE Gödöllő

6 A hasonlóság aspektusai IV.
A hasonlóságmérés műveletei: Tisztán logikai alapú csoportképzés (vö. szakértői rendszerek, CNF, kontingencia-koefficiens, rangsor-korreláció) (?) Fuzzy logic (Milyen mennyiségek azonosítanak egy minőséget?) (?) Scoring (hibrid /numerikus&logikai/ rendszerek, pl. hitelképesség, BSC) Tisztán numerikus megoldások (vö. korreláció, legkisebb négyzetek elve, ill. függvényillesztés, cluster, neurális háló, avagy tetszőleges transzformációk eredményeinek összevetése) Pitlik László, SZIE Gödöllő

7 Csapda: túl sokféle korreláció
Kontingencia koefficiens és a numerikus korreláció függetlensége Véletlen számokból előállított vektorok esetén a medián alapján számított kontingecia koefficiens ill. az EXCEL képlettel számított korreláció értékei az elvárásoknak! megfelelően szabályos pontfelhőt eredményeznek. Ennek alapján válik érthetővé, miért kell a modellek helyességét alulról, vagyis a kontingencia oldaláról megalapozni. A magas numerikus korreláció ugyanis nem biztosítja a magas kontingencia koefficiens értékeket, ami a modelleket instabillá teszi, ill. szakértői rendszerként való alkalmazásukat kizárja. A korreláció sokfélesége már önmagában is egy filozófia csapdahelyzetet, vagyis a céltalanság tételét érzékelteti, mely szerint sem az ember (mint a szubjektivitás megtestesítője), sem a tudomány (mint az objektivitás meglehetősen romos fellegvára) nem képes világos választ adni arra, három állapotsorozat (objektum) közül melyik kettő hasonlóbb egymáshoz? Pitlik László, SZIE Gödöllő

8 Pitlik László, SZIE Gödöllő

9 Projekttapasztalatok
Pitlik László, SZIE Gödöllő

10 Potenciálcsillag Módszer I.
Hibrid szakértői rendszer Grafikus támogatással Szubjektív tényezők és súlyok Előre beépített aggregációs eljárás (tetszőleges aggregációk esélye) Eredmény: százalékban kifejezett hasonlóság és vizuális támogatás Pitlik László, SZIE Gödöllő

11 Potenciálcsillag Módszer II.
Pitlik László, SZIE Gödöllő

12 Data Envelopment Analysis
LP-alapú, merev gondolatmenet Szubjektív tényezők (de: Lineáris egyenletté egyszerűsíthető: célirányos random „súlyok”, kreatív algoritmusok) Eredmény: százalékban kifejezett hasonlósági (hatékonysági) rangsor Pitlik László, SZIE Gödöllő

13 Pitlik László, SZIE Gödöllő
STOCKNET I. Kreatív bináris és numerikus hasonlósági függvények (CBR) Random tényezők (automatikus kizárás és beválasztás) Célfüggvény-vezérelt keresés Cél: olyan mintázatok fellelése komplex idősorokban, melyek igazoltan nagy találati arányú előrejelzést tesznek lehetővé Pitlik László, SZIE Gödöllő

14 Pitlik László, SZIE Gödöllő
STOCKNET II. Pitlik László, SZIE Gödöllő

15 Pitlik László, SZIE Gödöllő
Joker & playometria Ideális objektumhoz mért távolság alapján (black box) hasonlósági rangsor Kézi paraméterezés, kézi súlyozás Skála-transzformációkkal egy rangsor tetszőlegesen átalakítható az alapadatok, paraméterek és súlyok megváltoztatása nélkül is!  playometria… Csak szubjektív rangsor létezik!? Objektív paraméterezés esélye: tanulási folyamat szimulálása révén! Pitlik László, SZIE Gödöllő

16 Pitlik László, SZIE Gödöllő
Összegzés I. A hasonlóság elemzés idealizált célja: A hasonlóság-elemzés (vö. benchmarking) alkalmazása révén minden paradoxon ellenére elvárható, hogy egyes objektumok (pl. emberek, vállalkozások, települések, kistérségek, megyék, régiók, országok) másokhoz mérve magukat újszerű (számos esetben ok-okozatilag talán le sem vezethető) ötletet nyernek arra vonatkozóan, hová is „fejlődjenek” (változzanak) annak reményében, hogy bizonyos céljaik (alapvetően a fennmaradásuk) biztosított legyen. számos „összevethetőnek tűnő” jellemzővel rendelkező objektum (pl. vállalkozás, autó, ingatlan, régió, ország) külső szemlélőként való összevetése feltárhatja a támogatásra ill. a befektetésre (hitelképességre, ill. kockázati tőke bevonásra) való jogosultság mértékét. Pitlik László, SZIE Gödöllő

17 Pitlik László, SZIE Gödöllő
Összegzés II. Az előadás célja volt: a hasonlóságelemzés csapdáinak felvázolása (annak érdekében, hogy a tudomány eszközeit és eredményeit valós értékükön kezelhessük), ebből következően a hasonlóságelemzés kreatív keresési problémaként való definiálása, szemben az alkalmazói önkényt kizárását meg sem kísérlő, merev algoritmusok által megtestesített alternatívákkal. A tudományos eszközök automatizált használatának vizsgálata teremtheti meg az elemző módszerekkel, mint hálózati (vö. Internet) erőforrásokkal való társadalmi szintű gazdálkodás alapjait (vö. web services), mely egyben az esélyegyenlőség és az egyensúlyi politizálás újszerű módszertani alapja is. Pitlik László, SZIE Gödöllő

18 Science fiction vs. Science direction
Ha a rangsorolás objektivitása és automatizálhatósága filozófiai szinten bizonytalan is, akkor sem elegendő, hogy: csak egyetlen megoldási alternatíva kialakítása már (tudományos) eredmény legyen, a tudomány ne alkalmazza szisztematikusan a minőségbiztosítás/projektmenedzsment már felismert oktatott és másokon számon kért elveit, ne legyen verseny az elemzők között tetszőleges modell helyességi értékek tekintetében, ne legyen világos koncepció arra, ki a felelős tudásvagyon menedzsmentjéért, a projekt-eredmények hasznosításáért, katalogizálásáért, a folyamatok egymásra épüléséért. Pitlik László, SZIE Gödöllő

19 Köszönöm a figyelmet! pitlik@miau.gau.hu
Pitlik László, SZIE Gödöllő


Letölteni ppt "Hasonlóságelemzés, avagy a fejlettség mérésének csapdái"

Hasonló előadás


Google Hirdetések