Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
1
Műszaki és környezeti áramlástan I.
Gyakoroló feladatok V. Bernoulli egyenlet valós folyadékokra – hosszmenti veszteség tényező számítása Nikuradse-diagrammal
2
1. példa: Az ábrán látható kenő berendezésben viszkozitású olaj áramlik. A be belépési veszteségtényezőt lineáris áramlás esetén be=1,2 vagy turbulens áramlás esetén be=0,05 értékkel vegye fel. Adatok: l=2 m; d=10 mm; H=1,5 m; be=1,2; =2·10-4 m2/s. Számítsa ki az olaj áramlási sebességét! A számítás során a cső egyenesnek tekinthető. Megoldás: Alkalmazzuk a veszteséges Bernoulli egyenletet az 1-es és 2-es pont között:
3
A nyomásveszteség jelen esetben a sebességprofil kialakulása során fellépő belépési és a fali csúsztatófeszültség által okozott csősúrlódási veszteségből áll: Tekintettel az olaj nagy viszkozitására és a cső kis átmérőjére, feltételezhetjük, hogy az áramlás lamináris lesz. A számítás során ezt ellenőrizni kell! Lamináris áramlás esetén a csősúrlódási tényező: Mindezeket figyelembe véve a Bernoulli egyenlet:
4
A másodfokú egyenlet kanonikus alakra hozva:
Ellenőrizzük le a Reynolds-szám értékét: Tehát valóban lamináris az áramlás.
5
2. feladat Egy víztorony tartályába a folyadékszínt állandó H magasságú. A fogyasztást qbe térfogatáram betáplálásával pótoljuk. Adatok: l1=50 m; l2=l3=20 m; l4=20 m; d1=150 mm; d2=100 mm; 1=2=1,2; 3=2,5; qbe=18 l/s; =1,3·10-6 m2/s; ρ=1000 kg/m3. Számítsa ki a betáplálási pontban szükséges túlnyomást, adottak az átáramlott idomok veszteségtényezői és a hálózat felépítése, valamint a csőérdességi tényező értéke k=0,1 mm!
6
2. feladat II Az áramlási sebesség a d1 és d2 átmérőjű csövekben:
A betáplálás és a fogyasztás között alkalmazzuk a veszteséges Bernoulli-egyenletet: ahol az össznyomás veszteség:
7
2. feladat III Nikuradse diagramból:
amelyből a túlnyomás a betáplálási pontban: Hf: milyen magasan áll a víztoronyban a vízszint?
8
5. Példa: Stacioner áramlás, k=0,1 mm be=0,5; ρ=1000 kg/m3; =1,6·10-6 m2/s; qV=10·10-3 m3/s; ζd=0,6; p0=0,1MPa; D1=50 mm; D2=100 mm; l1=10 m; l2=15 m; h=2 m; p=? [Pa] Megoldás: Nikuradse diagramból: λ1=0,024 Nikuradse diagramból: λ2=0,023
10
6. Példa: Hány %-kal nő a térfogatáram, ha a cső végére a szaggatottan jelölt A2/A1=1,6 felületviszonyú, ηd=0,85 hatásfokú diffúzort csatlakoztatjuk? λ=áll.=0,04; H=8 m; D=0,05 m; l=10 m Megoldás: Diffúzor nélkül:
11
Diffúzorral: A térfogatáram tehát 3%-kal nő.
12
7. Példa: Stacioner állapot; p=3 bar; p0=1 bar; h1=2 m; h2=3 m; D=0,05 m; α=0,75; ρ=1000 kg/m3; =1,3·10-6 m2/s; qV=? [m3/s] Megoldás: A veszteséges Bernoulli egyenlet a két felszín között felírva: ahol v a D átmérőjű kivágásban lévő sebesség.
13
8. Példa: Hidraulikailag sima cső, stacioner áramlás, p1=1,32 bar; p0=1 bar; ρ=1000 kg/m3; d=0,05 m; H=2 m; z=2 m; L=4 m; λ=0,025; qV=? [m3/s] Megoldás: Bernoulli egyenlet a bal oldali felszíntől a kiömlésig:
14
9. Példa: Hidraulikailag sima cső, stacioner áramlás, p0=1 bar; ρ=1000 kg/m3; =1,3·10-6 m2/s; d1=0,05 m; d2=0,1 m; h=1,5 m; L=20 m; =0,6; ηd=0,7; qV=5·10-3 m3/s; H=? Megoldás:
15
Bernoulli-egyenlet a bal és jobb oldali felszín közt:
16
10. Példa: Hidraulikailag sima cső
10. Példa: Hidraulikailag sima cső. d1=0,1 m; d2=0,2 m; l1=l2=10 m; p1=7,5 bar; p0=1 bar; ρ=1000 kg/m3; =1,3·10-6 m2/s; H=10 m; qV=? Megoldás: A folyadék felszíne és a kiáramlási keresztmetszet között:
17
Iteráció, legyen: Az iteráció eredménye:
18
11. Példa: Stacioner áramlás
11. Példa: Stacioner áramlás. h= 2 m; l=10 m; d=0,05 m; =1,3·10-6 m2/s; ρ=1000 kg/m3; p0-pA=? Megoldás: A nyomáskülönbség meghatározásához ismernünk kell a csőben az áramlási sebességet.
19
12. Példa: Hidraulikusan érdes cső: d/k=20; h=2 m; l=30 m; D=0,2 m; p=2 bar; p0=1 bar; ρ=1000 kg/m3; =3,4·10-4 m2/s; qV=? Megoldás: Iteráció Nikuradse diagrammal:
20
13. Példa: Az ábrán látható berendezés végtelen nagynak tekinthető keresztmetszetű elosztócsövébe viszkózus folyadék (víz) áramlik be, amelyből két - egymással párhuzamosan kapcsolt – csőszálon át az ugyancsak végtelen nagynak tekinthető keresztmetszetű gyűjtőcsőbe áramlik át. A párhuzamos csövek hidraulikailag érdesek. Kérdés, hogy a csőrendszeren áthaladó teljes qV térfogatáram hogyan oszlik meg a párhuzamos csövek között (qVA és qVB)? Megoldás: Az A csőszál nyomásvesztesége: Az B csőszál nyomásvesztesége:
21
A veszteségekben a kilépési veszteségek is bennfoglaltatnak
A veszteségekben a kilépési veszteségek is bennfoglaltatnak. Mivel az elosztó és gyűjtőcső igen nagy keresztmetszetű, bennük egyenletes nyomáseloszlást tételezhetünk fel. Ezért kell, hogy legyen. Ebből a feltételből a párhuzamos csőszálakbeli sebességek aránya:
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.