Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Open System Interconnect

Hasonló előadás


Az előadások a következő témára: "Open System Interconnect"— Előadás másolata:

1 Open System Interconnect
OSI modell Open System Interconnect

2

3 Fizikai réteg az 1. szint A használt címek: fizikai címek (MAC)
A fizikai réteg határozza meg minden, az eszközökkel kapcsolatos fizikai és elektromos specifikációt, beleértve az érintkezők kiosztását, a használatos feszültség szinteket és a kábel specifikációkat. Fizikai rétegen használt PDU (protocol data unit): BITEK A használt címek: fizikai címek (MAC)

4 A fizikai réteg által megvalósított fő funkciók:
felépíteni és lezárni egy csatlakozást egy kommunikációs médiummal. részt venni egy folyamatban, amelyben a kommunikációs erőforrások több felhasználó közötti hatékony megosztása történik. Például, kapcsolat szétosztás és adatáramlás vezérlés. moduláció, vagy a digitális adatok olyan átalakítása, konverziója, jelátalakítása, ami biztosítja, hogy a felhasználó adatait a megfelelő kommunikációs csatorna továbbítani tudja. A jeleket vagy fizikai kábelen – réz vagy optikai szál, például – vagy rádiós kapcsolaton keresztül kell továbbítani.

5 A csatornán történő információátvitel során az adó megváltoztatja a csatorna fizikai közegének valamilyen tulajdonságát, ami a közegen továbbterjed, és a vevő ezt a fizikai közegváltozást érzékeli. Például vezetékek esetén az átfolyó áram változhat, vagy a feszültség, vagy ha elektromágneses hullámot használunk, akkor a hullám amplitudója, frekvenciája, vagy kezdeti fázisszöge.

6 Az adatátvitel modellje:

7 Az adatátvitel fogalmai
A sávszélesség az analóg rendszerek esetén használt fogalom: egy adott analóg jel maximális és minimális frekvenciájának a különbségét értjük alatta. Például az emberi beszéd alsó frekvenciája 300Hz, a felső frekvenciája 3300 Hz, így a sávszélessége: =3.1 kHz

8 Digitális hálózatokat az adatátviteli sebességükkel: az időegység alatt átvitt bitek számával jellemezhetjük. Az átvitelt jellemezhetjük a felhasznált jel értékében 1 másodperc alatt bekövetkezett változások számával is, amit jelzési sebességnek, vagy közismert néven baud-nak nevezünk.

9 1 baud = log2 P [bit/s], ahol P a kódolásban használt jelszintek száma.
Például olyan átvitelnél ahol ezt kétállapotú jelekkel valósítjuk meg, ott a baud és a bit/s azonos számértéket adnak, de ha a jelet négy szint felhasználásával visszük át, ott a baud számértéke már csak fele a bit/s-ban megadott valós adatátviteli sebességnek. Ezért mindig gondosan, ne egymás szinonimájaként használjuk a baud és bit/s mértékegységeket!

10 Vonalak megosztása: A csatornák amelyeken az üzenetek áramlanak, igen jelentős költséggel megépített és üzemeltetett összeköttetéseken (vezeték, rádióhullám) keresztül valósulnak meg. Ezért nem célszerű, ha egy kommunikációs csatorna számára kisajátítunk egy vonalat, mert nagyon sok esetben a kommunikáció jellegéből fakadóan nincs folyamatos információcsere rajta, azaz a legtöbb kapcsolatban a vonalhasználat időszakosan jelentkezik. Mivel az ADÓ és VEVÕ oldal számára csak a végeredmény, az információ a fontos, ezért több csatorna is kialakítható egy vonalon, amelynek megvalósítására több lehetőség van.

11 Vonalmegosztási módszerek:
Multiplexelés: A fizikai vonal felosztása több vonalra frekvenciaosztásos, vagy időosztásos. Az egyik megoldás az, mikor a fizikai közeget osztjuk meg több csatorna között. Ezt az adott vonal felosztását csatornákra több adó, illetve vevõ között multiplexelés-nek nevezzük. A multiplexelés olyan eljárás, amelynek során egy adatvonalat elõre meghatározott, rögzített módszer szerint osztunk fel elemi adatcsatornákra. Minden bemenõ elemi csatornához egy kimenõ csatorna is tartozik, ezért a multiplexelés nem okoz csatorna-foglaltságot. Ezek a frekvenciaosztásos és az idõosztásos multiplexelési módszerek, illetve ezek kombinációja.

12 A másik lehetõség a vonalak maximális kihasználására, az átviendõ információ kisebb adagokra bontása. A vonalon egymás után történik ezek átvitele, majd a darabokból az összerakásuk. Ez az ADÓ és a VEVÕ számára folyamatos összeköttetés látszatát kelti. Ezek az üzenet és csomagkapcsolási módszerek.

13 Vonalkapcsolás Az állomások között összeköttetést létesít, tart fenn illetve bont le. a kezdeményezı. A hívást bármelyik fél kezdeményezheti.

14 Multiplexelés frekvenciaosztással
Frekvencia osztásos multiplexelés (FDM - Frequency-Division Multiplexing) üzemmódban elsõsorban a távbeszélõ-hálózatok vivõfrekvenciás rendszereinek szélessávú fõvonalait használják. A széles frekvenciasávban idõben is egyszerre haladnak a különbözõ vivõfrekvenciákra ültetett jelek. A módszer alapelve azon a tényen alakul, hogy szinuszos hullámok összegébõl bármelyik összetevõ egy megfelelõ szûrõvel leválasztható. Az adó oldalon a csatornák jeleit egy-egy vivõfrekvenciára ültetik (a vivõfrekvenciát a jelekkel modulálják), ezeket összegzik, az összegzett jelet átviszik a vevõ oldalra, és ott ezeket szûrõkkel választják szét.

15

16 Multiplexelés szinkron idõosztással
Digitális átvitelnél az idõ-multiplex (STDM - Synchronous Time-Division Multiplexing) berendezések a nagyobb sávszélességû adatvonalat idõben osztják fel több, elemi adatcsatornára. Minden elemi adatcsatorna egy-egy idõszeletet kap. A fõvonal két végén elhelyezkedõ vonali multiplexerek elõre meghatározott idõben, periodikusan, egymással szinkronban mûködve összekapcsolják egy-egy rövid idõre — néha egyetlen bit, legtöbbször egyetlen karakter vagy bájt, esetleg néhány bájt átviteli idejére — az összetartozó be-, illetve kifutó vonalakat.

17 Átviteli közegek: Átviteli közegek: Vezetékes:
UTP, STP (Csavart érpár): Koaxális kábelek: Üvegszálas kábel (A multimódusú optikai kábel magátmérője tipikusan 50 illetve 62,5 mikron.) Rádiós: Wifi,

18 Kódolások: RZ, NRZ, NRZI, AMI, HDB3, MANCHESTER
RZ - Return to Zero - Nullára visszatérõ. A nulla a "nyugalmi állapot", 1 bitnél a bitidõ elsõ felében a +V, a második felében a jel visszatér a 0-ra:

19 Fizikai réteg eszközei:
HUB (multiportos repeater) Aktív (külső áramforrással ellátott „ multiportos repeater”) Passziv (elosztóként működik) A HUB a hálózatban az ütközések számát növeli!!! Repeater Átviteli közeg meghosszabbítására használjuk. Egy vonalra maximum 4 köthető be.


Letölteni ppt "Open System Interconnect"

Hasonló előadás


Google Hirdetések