Az előadás letöltése folymat van. Kérjük, várjon

Az előadás letöltése folymat van. Kérjük, várjon

Hipotézisvizsgálat II.

Hasonló előadás


Az előadások a következő témára: "Hipotézisvizsgálat II."— Előadás másolata:

1 Hipotézisvizsgálat II.
Dr. Varga Beatrix egy. docens A. Rodin: A gondolkodó

2 Paraméteres hipotézisvizsgálatok
II. Kétmintás próbák

3 Két sokaság várható értékének különbségére vonatkozó hipotézis-vizsgálat
minta 1 minta 2 minta elemszáma n1 n2 adatok x11, x12, …x1n x21, x22, …x2n minta átlag mintabeli korrigált tapasztalati szórás s1 s2 sokasági szórás σ1 σ2

4 H0 : μ1 – μ2 = δ véletlen, független minták mindkét sokaság normál eloszlású, a szórások ismertek mintanagyság tetszőleges 𝐳= 𝒙 𝟏− 𝒙 𝟐 −δ 𝝈𝟏 𝒏𝟏 𝟐 + 𝝈𝟐 𝟐 𝒏𝟐 Közelítőleg használható akkor is, ha a változók eloszlása nem normális, de nagy mintánk van.

5 H0 : μ1 – μ2 = δ EXCEL: Adatok/Adatelemzés

6 H0 : μ1 – μ2 = δ véletlen, független minták mindkét sokaság normál eloszlású, a szórások nem ismertek az ismeretlen szórások egyezősége feltételezhető kis minta 𝐭= (𝐱𝟏 − 𝐱𝟐 )−𝛅 𝐬𝐩𝟐 𝐧𝟏 + 𝐬𝐩𝟐 𝐧𝟐 szabadságfok: n1+n2-2 Közelítőleg használható akkor is, ha a változók eloszlása nem normális, de nagy mintánk van.

7 H0 : μ1 – μ2 = δ EXCEL: Adatok/Adatelemzés

8 H0 : μ1 – μ2 = δ szabadságfok: szfw
véletlen, független minták mindkét sokaság normál eloszlású, a szórások nem ismertek az ismeretlen szórások egyezősége nem feltételezhető kis minta 𝒕𝒘= 𝒙 𝟏− 𝒙 𝟐 −δ 𝒔𝟏 𝒏𝟏 𝟐 + 𝒔𝟐 𝟐 𝒏𝟐 𝐬𝐳𝐟𝐰= 𝐬𝟏𝟐 𝐧𝟏 + 𝐬𝟐𝟐 𝐧𝟐 𝟐/ 𝒔𝟏𝟐 𝒏𝟏 𝟐 𝒏𝟏−𝟏 + 𝒔𝟐𝟐 𝒏𝟐 𝟐 𝒏𝟐−𝟏 szabadságfok: szfw Közelítőleg használható akkor is, ha a változók eloszlása nem normális, de nagy mintánk van.

9 H0 : μ1 – μ2 = δ EXCEL: Adatok/Adatelemzés

10 t = 𝒅 −𝜹 𝒔𝒅 𝒏 H0 : μ1 – μ2 = δ kis minta véletlen, párosított minták
A változók különbsége normális eloszlású, kis minta Ahol: sd a különbségek becsült szórása n a párok száma t = 𝒅 −𝜹 𝒔𝒅 𝒏 szabadságfok: n-1 Nagy minták esetén közelítő érvénnyel használható akkor is, ha a különbség nem normális eloszlású.

11 H0 : μ1 – μ2 = δ EXCEL: Adatok/Adatelemzés

12 Két sokasági arány különbségére vonatkozó hipotézisvizsgálat
H0 : P1 – P2 = ε minta minta 2 Minta elemszám m n Mintabeli arány Mintabeli szórás ahol q1 = 1 - p q2 = 1 - p2 Feltétel: mindkét sokaságból nagy minta

13 Szórások egyezőségére vonatkozó hipotézisvizsgálat
Feltétel: normál alapeloszlású sokaságok H1 valószínűség Alsó kritikus érték (ca) Felső kritikus érték (cf) H1: 1≠2 1-/2 H1: 1<2 1- - H1: 1>2

14 H0 : 1 = 2 EXCEL: Adatok/Adatelemzés

15 Critical values of F-test

16 Tervezik egy új töltőgép beszerzését, mely a műszaki leírás szerint kisebb szórással, pon-tosabban termel. A próbaüzem során azon-ban azt tapasztalták, hogy az új gépen töltött 150 db kávécsomag összes töltőtömege 37,65 kg; Σx2= A minta alapján elfogadjuk-e a fenti állítást? Milyen szignifikancia-szinten fogadjuk el azt az állítást, hogy az új gépen az átlagos töltősúly legalább 7g-mal több?

17 Elfogadható-e α=2%-os szignifikancia-szinten, az a feltételezés, hogy az új gépen a 250g-nál kisebb tömegű csomagok aránya legfeljebb 10 százalékponttal kevesebb, ha a megvizsgált 150 kávécsomagból 105-nek volt a tömege az előírt 250 g-nál kevesebb?

18 x (x) 0,00 0,5000 0,52 0,6985 1,04 0,8508 1,56 0,9406 2,40 0,9918 0,02 0,5080 0,54 0,7054 1,06 0,8554 1,58 0,9429 2,50 0,9938 0,04 0,5160 0,56 0,7123 1,08 0,8599 1,60 0,9452 2,60 0,9953 0,06 0,5239 0,58 0,7190 1,10 0,8643 1,62 0,9474 2,70 0,9965 0,08 0,5319 0,60 0,7257 1,12 0,8686 1,64 0,9495 2,80 0,9974 0,10 0,5398 0,62 0,7324 1,14 0,8729 1,66 0,9515 2,90 0,9981 0,12 0,5478 0,64 0,7389 1,16 0,8770 1,68 0,9535 3,00 0,9987 0,14 0,5557 0,66 0,7454 1,18 0,8810 1,70 0,9554 3,20 0,9993 0,16 0,5636 0,68 0,7517 1,20 0,8849 1,72 0,9572 3,40 0,9996 0,18 0,5714 0,70 0,7580 1,22 0,8888 1,74 0,9591 3,60 0,9998 0,20 0,5793 0,72 0,7642 1,24 0,8925 1,76 0,9608 3,8 0,9999 0,22 0,5871 0,74 0,7703 1,26 0,8962 1,78 0,9625 z-test 0,24 0,5948 0,76 0,7764 1,28 0,8997 1,80 0,9641 0,26 0,6026 0,78 0,7823 1,30 0,9032 1,82 0,9656 0,28 0,6103 0,80 0,7881 1,32 0,9066 1,84 0,9671 0,30 0,6179 0,82 0,7939 1,34 0,9099 1,86 0,9686 0,32 0,6255 0,84 0,7995 1,36 0,9131 1,88 0,9699 0,34 0,6331 0,86 0,8051 1,38 0,9162 1,90 0,9713 0,36 0,6406 0,88 0,8106 1,40 0,9192 1,92 0,9726 0,38 0,6480 0,90 0,8159 1,42 0,9222 1,94 0,9748 0,40 0,6554 0,92 0,8212 1,44 0,9251 1,96 0,9750 0,42 0,6628 0,94 0,8264 1,46 0,9279 1,98 0,9761 0,44 0,6700 0,96 0,8315 1,48 0,9306 2,00 0,9772 0,46 0,6772 0,98 0,8365 1,50 0,9332 2,10 0,9821 0,48 0,6844 1,00 0,8413 1,52 0,9357 2,20 0,9861 0,50 0,6915 1,02 0,8461 1,54 0,9382 2,30 0,9893

19 Student’s t-test Df 0,55 0,60 0,70 0,75 0,80 0,90 0,95 0,975 0,99 0,995 1 0,158 0,325 0,727 1,000 1,376 3,08 6,31 12,71 31,82 63,66 2 0,142 0,289 0,617 0,816 1,061 1,89 2,92 4,30 6,96 9,92 3 0,137 0,277 0,584 0,765 0,978 1,64 2,35 3,18 4,54 5,84 4 0,134 0,271 0,569 0,741 0,941 1,53 2,13 2,78 3,75 4,60 5 0,132 0,267 0,559 0,920 1,48 2,02 2,57 3,36 4,03 6 0,131 0,265 0,553 0,718 0,906 1,44 1,94 2,45 3,14 3,71 7 0,130 0,263 0,549 0,711 0,896 1,42 1,90 2,36 3,00 3,50 8 0,262 0,546 0,706 0,889 1,40 1,86 2,31 2,90 9 0,129 0,261 0,543 0,703 0,883 1,38 1,83 2,26 2,82 3,25 10 0,260 0,542 0,700 0,879 1,37 1,81 2,23 2,76 3,17 11 0,540 0,697 0,876 1,36 1,80 2,20 2,72 3,11 12 0,128 0,259 0,539 0,695 0,873 1,78 2,18 2,68 3,06 13 0,538 0,694 0,870 1,35 1,77 2,16 2,65 3,01 14 0,258 0,537 0,692 0,868 1,34 1,76 2,14 2,62 2,98 15 0,536 0,691 0,866 1,75 2,60 2,95 16 0,535 0,690 0,865 2,12 2,58 17 0,257 0,534 0,689 0,863 1,33 1,74 2,11 18 0,127 0,688 0,862 1,73 2,10 2,55 2,88 19 0,533 0,861 2,09 2,54 2,86 20 0,687 0,860 1,32 1,72 2,53 2,84 21 0,532 0,686 0,859 2,08 2,52 2,83 22 0,256 0,858 2,07 2,51 23 0,685 1,71 2,50 2,81 24 0,531 0,857 2,06 2,49 2,80 25 0,684 0,856 2,48 2,79 26 27 0,855 1,31 1,70 2,05 2,47 2,77 28 0,530 0,683 29 0,854 2,04 2,46 30 2,75 40 0,126 0,255 0,529 0,681 0,851 1,30 1,68 2,42 2,70 60 0,254 0,527 0,679 0,848 1,67 2,00 2,39 2,66 120 0,526 0,677 0,845 1,29 1,66 1,98 0,253 0,524 0,674 0,842 1,28 1,645 1,96 2,33

20 χ2 Df 0,005 0,01 0,025 0,05 0,10 0,25 0,50 0,75 0,90 0,95 0,975 0,99 0,995 1 0,0000 0,0002 0,0010 0,039 0,0158 0,102 0,455 1,32 2,71 3,84 5,02 6,63 7,88 2 0,0100 0,0201 0,0506 0,103 0,211 0,575 1,39 2,77 4,61 5,99 7,38 9,21 10,6 3 0,072 0,115 0,216 0,352 0,584 1,21 2,37 4,11 6,25 7,81 9,35 11,3 12,8 4 0,207 0,297 0,484 0,711 1,06 1,92 3,36 5,39 7,78 9,49 11,1 13,3 14,9 5 0,412 0,554 0,831 1,15 1,61 2,67 4,35 9,24 15,1 16,7 6 0,676 0,872 1,24 1,64 2,20 3,45 5,35 7,84 12,6 14,4 16,8 18,5 7 0,989 1,69 2,17 2,83 4,25 6,35 9,04 12,0 14,1 16,0 20,3 8 1,34 1,65 2,18 2,73 3,49 5,07 7,34 10,2 13,4 15,5 17,5 20,1 22,0 9 1,73 2,09 2,70 3,33 4,17 5,90 8,34 11,4 14,7 16,9 19,0 21,7 23,6 10 2,16 2,56 3,25 3,94 4,87 6,74 9,34 12,5 18,3 20,5 23,2 25,2 11 2,60 3,05 3,82 4,57 5,58 7,58 10,3 13,7 17,3 19,7 21,9 24,7 26,8 12 3,07 3,57 4,40 5,23 6,30 8,44 14,8 21,0 23,3 26,2 28,3 13 5,01 5,89 7,04 9,30 12,3 19,8 22,4 27,7 29,8 14 4,07 4,66 5,63 6,57 7,79 17,1 21,1 23,7 26,1 29,1 31,3 15 4,60 6,26 7,26 8,55 11,0 14,3 18,2 22,3 25,0 27,5 30,6 32,8 16 5,14 5,81 6,91 7,96 9,31 11,9 15,3 19,4 23,5 26,3 28,8 32,0 34,3 17 5,70 6,41 7,56 8,67 10,1 16,3 24,8 27,6 30,2 33,4 35,7 18 7,01 8,23 9,39 10,9 21,6 26,0 28,9 31,5 34,8 37,2 19 6,84 7,63 8,91 11,7 14,6 22,7 27,2 30,1 32,9 36,2 38,6 20 7,43 8,26 9,59 12,4 19,3 23,8 28,4 31,4 34,2 37,6 40,0 21 8,03 8,90 11,6 13,2 24,9 29,6 32,7 35,5 38,9 41,4 22 8,64 9,54 14,0 17,2 21,3 30,8 33,9 36,8 40,3 42,8 23 9,26 13,1 18,1 27,1 35,2 38,1 41,6 44,2 24 9,89 13,8 15,7 28,2 33,2 36,4 39,4 43,0 45,6 25 10,5 11,5 16,5 19,9 24,3 29,3 34,4 37,7 40,6 44,3 46,9 26 11,2 12,2 15,4 20,8 25,3 30,4 35,6 41,9 48,3 27 11,8 12,9 16,2 36,7 40,1 43,2 47,0 49,6 28 13,6 18,9 27,3 32,6 37,9 41,3 44,5 51,0 29 17,7 33,7 39,1 42,6 45,7 52,3 30 15,0 20,6 24,5 43,8 50,9 53,7 40 20,7 22,2 24,4 26,5 39,3 51,8 55,8 59,3 63,7 66,8 50 28,0 29,7 32,4 42,9 49,3 56,3 63,2 67,5 71,4 76,2 79,5 60 37,5 40,5 46,5 67,0 74,4 79,1 83,3 88,4 92,0 70 43,3 45,4 48,8 51,7 55,3 61,7 69,3 77,6 85,5 90,5 95,0 100,4 104,2 80 51,2 53,5 57,2 60,4 64,3 71,1 79,3 88,1 96,6 101,9 106,6 112,3 116,3 90 59,2 61,8 65,6 69,1 73,3 80,6 89,3 98,6 107,6 113,1 118,1 124,1 128,3 100 67,3 70,1 74,2 77,9 82,4 90,1 99,3 109,1 118,5 124,3 129,6 135,8 140,2

21

22 Köszönöm a figyelmet!


Letölteni ppt "Hipotézisvizsgálat II."

Hasonló előadás


Google Hirdetések