ARZÉN. 50 μg/L  10 μg/L A határérték meghatározása: Maximálisan megengedhető arzén bevitel: 2 μg arzén/kg/nap Átlagos 70 kg-os testtömeget feltételezve.

Slides:



Advertisements
Hasonló előadás
Nitrogén vizes környezetben
Advertisements

2010. július 8. Sopron Hidrológiai Társaság
Települési vízgazdálkodás I. 7.előadás
Készítők: Hőgyes Endre Gimnázium és Szakközépiskola
Gáz-folyadék fázisszétválasztás
Tisztítás, fertőtlenítés
Az ásványi anyagok forgalma
Víztisztítás ultraszűrésel
ADSZORPCIÓS TECHNOLÓGIÁK ALKALMAZÁSA A VÍZTISZTÍTÁSBAN
Technológiai alapfolyamatok
Ammónium.
Ivóvíztisztítás Vízi Közmű és Környezetmérnöki Tanszék Laky Dóra.
Vízminőségi jellemzők
ARZÉN.
ARZÉN ELTÁVOLÍTÁSA IVÓVÍZBŐL
Vörösiszapok kezelése és hasznosítása
Kémiai szennyvíztisztítás
VÍZBÁZISOK ÉS JELLEMZŐ SZENNYEZŐANYAGAIK
Energia és környezet A levegőtisztaság-védelem céljai és eszközei Levegőszennyezés matematikai modellezése.
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek.
Szennyvízkezelés 1. előadás b,
Továbbfeldolgozási eljárások és technológiák
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Derítés.
Levegőtisztaság-védelem 3. előadás Természetes és antropogén eredetű légszennyezők. Pont-,vonal-, diffúz források.
Levegőtisztaság-védelem 3. előadás Természetes és antropogén eredetű légszennyezők. Pont-,vonal-, diffúz források.
Sav bázis egyensúlyok vizes oldatban
A szappanok káros hatásai
A szappanok káros hatásai
Szennyvíztisztítás Melicz Zoltán Egyetemi adjunktus
ADSZORPCIÓS TECHNOLÓGIÁK ALKALMAZÁSA A VÍZTISZTÍTÁSBAN
Ammónium.
ADSZORPCIÓ.
Tavak, tározók rehabilitációja
KÉMIAI KEZELÉS ALKALMAZÁSA A SZENNYVÍZTISZTÍTÁSBAN
ARZÉN. 50 μg/L  10 μg/L A határérték meghatározása: Maximálisan megengedhető arzén bevitel: 2 μg arzén/kg/nap Átlagos 70 kg-os testtömeget feltételezve.
A szennyvíztisztítás hulladékai
Vízlágyítás.
ADSZORPCIÓ.
ARZÉN.
Ivóvíztisztítás Vízi Közmű és Környezetmérnöki Tanszék Laky Dóra.
Biológiai folyamatok az ivóvíztisztításban
Technológiai alapfolyamatok
Ammónium.
Vízlágyítás.
Koaguláció. Kolloid részecske és elektrosztatikus mezője Nyírási sík (shear plane): ezen belül a víz a részecskével együtt mozog Zéta-potenciál: a nyírási.
Koaguláció.
Települési vízgazdálkodás
TALAJ KÉMIAI TULAJDONSÁGAI
OLDÓDÁS.
Uránszennyezés a Mecsekben
Vízfelhasználás minőségi követelményei
A Duna partján történt események röviden! Pillman Nikolett Schäffer Ivett.
A Föld vízkészlete.
Települési vízkezelés ZeeWeed® az ivóvízkezelésben (magyar írásmóddal és mértékegységekkel kiegészítve - ÁF)
A levegőtisztaság-védelem fejlődése , Franciaország világháborúk II. világháború utáni újjáépítés  Londoni szmog (1952) passzív eljárások (end.
Vízlágyítás. Ca HCO 3 - Ca 2+ + H 2 O + CO 2 + CO 3 2- CaCO 3 képződés Túl sok CO 2 a vízben --> agresszív CO 2 Túl kevés CO 2 a vízben --> CaCO.
Koaguláció.
Kémiai reakciók Kémiai reakció feltételei: Aktivált komplexum:
ADSZORPCIÓ.
A biológiai és a kémiai szennyvíztisztítás szimbiózisa
VAS- ÉS MANGÁNTALANÍTÁS
Laky Dóra Ózon és ultraibolya sugárzás felhasználása ivóvíz fertőtlenítésre Konzulens: Dr. Licskó István Prof. Tuula Tuhkanen szeptember 25.
MI AZ IVÓVÍZ? Az a víz, amely megfelel az aktuális ivóvízszabvány követelményeinek, ivóvíznek tekinthető. Ivóvízellátás Egyedi kutas Közüzemi A különféle.
Oldat = oldószer + oldott anyag (pl.: víz + só, vagy benzin + olaj )
Vízellátó-hálózatok, ivóvízminőség-javítás lehetőségei, módszerei
Próbaüzem tapasztalatai, gazdasági megfontolások
Energia és környezet Szennyezőanyagok légköri terjedése Bevezető Dr. Gács Iván BME Energetikai Gépek és Rendszerek Tanszék
A szennyvíztisztítás hulladékai
Mikroszkópos biológiai problémák kezelése és alkalmazása a vízbiztonsági tervekben május 09. Előadó: Fazekas Zoltán Technológiai osztályvezető.
Előadás másolata:

ARZÉN

50 μg/L  10 μg/L A határérték meghatározása: Maximálisan megengedhető arzén bevitel: 2 μg arzén/kg/nap Átlagos 70 kg-os testtömeget feltételezve  140 μg arzén/nap Biztonsági tényezők figyelembe vétele: 100 μg arzén/nap

100 μg arzén/nap Étel: μg arzén/nap Ivóvíz általi fogyasztás: 20 μg arzén/nap 2L-es átlagos ivóvízfogyasztást feltételezve 10 μg/L a maximálisan megengedhető arzén koncentráció ivóvízben

100 μg arzén/nap Étel: μg arzén/nap Ivóvíz általi fogyasztás: 70 μg arzén/nap 2L-es átlagos ivóvízfogyasztást feltételezve 30 μg/L maximális koncentráció az ivóvízben megengedhető lenne Magyarországon...

Arzén Határérték: Régi magyar szabvány szerint:50 μg/L EU, új (2001 óta) magyar szabvány szerint:10 μ g/L Előfordulás: anionos formában, tehát oldott állapotú anyag jelenik meg felszínalatti vizeinkben pH < 8,0 - H 3 AsO 3 As(III) pH < 6,0 - H 2 AsO 4 - pH > 6,0 - HAsO 4 2-

Az arzén eredete Ásványok: többnyire vas- és kéntartalmú ásványokban jelenik meg Az arzén felszín alatti vizeinkben vas és mangán vegyületekkel együtt fordul elő Adott körülmények között (például az ásványokban jelen lévő kén átalakulása miatt, a fémek és az arzén oldott állapotba kerülhetnek) Reduktív viszonyok között a vas, a mangán és az arzén oldott állapotú vegyületei stabilizálódnak

Az arzén egészségügyi hatásai Rákkeltő (pl. „feketeláb betegség”)

Az arzén eltávolítására szolgáló technológiák

Alkalmazott technológiaArzén-eltávolító mechanizmus Koaguláció és szilárd/folyadék fázisszétválasztás kicsapatás adszorpció koprecipitáció Aktivált alumínium-oxidon történő adszorpció adszorpció Granulált vas-hidroxidon történő adszorpció adszorpció Ioncserés eljárásspeciális adszorpció Meszes vízlágyítás során történő arzén eltávolítás adszorpció a csapadék felületén, koprecipitáció Membrán technológiáknyomás hatására történő szilárd/folyadék fázisszétválasztás Szűrés mangán zöldhomokon keresztül katalitikus oxidáció, majd ezt követően adszorpció

Alkalmazott technológiaArzén-eltávolító mechanizmus Koaguláció és szilárd/folyadék fázisszétválasztás kicsapatás adszorpció koprecipitáció Aktivált alumínium-oxidon történő adszorpció adszorpció Granulált vas-hidroxidon történő adszorpció adszorpció Ioncserés eljárásspeciális adszorpció Meszes vízlágyítás során történő arzén eltávolítás adszorpció a csapadék felületén, koprecipitáció Membrán technológiáknyomás hatására történő szilárd/folyadék fázisszétválasztás Szűrés mangán zöldhomokon keresztül katalitikus oxidáció, majd ezt követően adszorpció

Arzén eltávolítása koagulációval + szil/foly fázissztétválasztással Lépései: Oxidáció Koaguláció (szilárd formává történő átalakítás) Szilárd/folyadék fázisszétválasztás (ülepítés, szűrés)

Oxidáció: Klór Kálium-permanganát Ózon (szervesanyag jelenléte befolyásolja a hatékonyságot) Levegő oxigénje – nem elég erős

Arzén eltávolítása koagulációval + szil/foly fázissztétválasztással A szilárd formává való alakulás a következő lépések szerint történik (a vas- illetve alumínium sókkal végzett koaguláció során): precipitáció (kicsapatás): oldhatatlan AlAsO 4 illetve FeAsO 4 képződése koprecipitáció: az arzén beépülése az alumínium- illetve vas-hidroxid pelyhekbe adszorpció: az arzenát [As(V)] vegyületek adszorpciója a vas- illetve alumínium-hidroxid pelyhek felületén

Vas-hidroxid pelyhek adagolása Al-hidroxid pelyhek adagolása Koaguláció (Al) Koaguláció (FeCl 3 ) Szorbeálódott arzén móljainak száma / az adagolt vas vagy alumínium móljainak száma Az oldatban maradó egyensúlyi arzén-koncentráció (  M) Forrás: Edwards (1994) Az „előre létrehozott” pelyhek és az in-situ pehelyképződés hatékonyságának összehasonlítása

Vas-hidroxid pelyhek adagolása Al-hidroxid pelyhek adagolása Koaguláció (Al) Koaguláció (FeCl 3 ) Szorbeálódott arzén móljainak száma / az adagolt vas vagy alumínium móljainak száma Az oldatban maradó egyensúlyi arzén-koncentráció (  M) Forrás: Edwards (1994) Az „előre létrehozott” pelyhek és az in-situ pehelyképződés hatékonyságának összehasonlítása adszorpció+koprecipitáció+(precipitáció) adszorpció

koaguláns dózis Az eltávolítás hatékonyságát befolyásoló tényezők arzén oxidációs száma pH alkalmazott koaguláns

koaguláns dózis Az eltávolítás hatékonyságát befolyásoló tényezők arzén oxidációs száma pH alkalmazott koaguláns

As(V) előfordulása a pH függvényében As(III) előfordulása a pH függvényében Forrás: Fields et al. (2000)

As(V) előfordulása a pH függvényében As(III) előfordulása a pH függvényében Forrás: Fields et al. (2000)

As(III) eltávolítása FeCl 3, Al 2 (SO 4 ) 3 és Bopac koagulánsokkal ~ 200 ug/L kezdeti arzénkoncentrációról (csepeli nyersvízből készített modell oldat) Az oxidáltsági fok szerepe

Eredmények A vas-klorid tehát bizonyos mértékben elő-oxidáció nélkül is csökkenti az arzénkoncentrációt, azonban a 10  g/L körüli alatti arzénkoncentráció eléréséhez előzetesen oxidálószer adagolása feltétlenül szükséges. Az alumínium-szulfát és Bopac koagulálószerek nem bizonyultak alkalmasnak az As(III) koncentráció csökkentésére. Az oxidáltsági fok szerepe

pH szerepe pH hatása az arzéneltávolításra alumínium-szulfát koagulálószer alkalmazása esetén (hajdúbagosi nyersvíz (2. sz. kút, üzemen kívűl); előoxidáció 1,35 mg Cl 2 /L hypóval, 70 ug/L kezdeti arzénkoncentráció)

pH szerepe A pH hatása egyértelmű (alacsonyabb pH értéken hatékonyabb arzén eltávolítás), azonban a koagulálószer dózisok növelésével (ami természetesen maga után vonja a maradék arzénkoncentráció csökkenését) a pH-tól való függés hatása egyre kisebb Figyelembe véve a magyarországi vizek magas pufferkapacitását, a pH szabályozás feltehetően nem gazdaságos megoldás

koaguláns dózis Az eltávolítás hatékonyságát befolyásoló tényezők arzén oxidációs száma pH alkalmazott koaguláns

As(V) eltávolítása FeCl 3, Al 2 (SO 4 ) 3 és Bopac koagulánsokkal ~ 200 ug/L kezdeti arzénkoncentrációról (budapesti csapvízből készített modell oldat) Az alkalmazott koaguláns típusa

As(V) eltávolítása FeCl 3, Al 2 (SO 4 ) 3 és Bopac koagulánsokkal ~ ug/L kezdeti arzénkoncentrációról (budapesti csapvízből készített modell oldat) Az alkalmazott koaguláns típusa

As(V) eltávolítása FeCl 3, Al 2 (SO 4 ) 3 és Bopac koagulánsokkal ~ 15 ug/L kezdeti arzénkoncentrációról (budapesti csapvízből készített modell oldat) Az alkalmazott koaguláns típusa

Más kutatási eredmények: Az alkalmazott koaguláns szerepe: pH  7,0 esetén az alumínium- és vas koaguláns hatékonysága közel azonos (ha az adagolt mólok számát tekintjük), azonban magasabb pH értékeken vas-koaguláns adagolása célravezetőbb (Magyarországon a hálózatba bocsátott víz pH-ja > 7)

Vas-hidroxid pelyhek adagolása Al-hidroxid pelyhek adagolása Koaguláció (Al) Koaguláció (FeCl 3 ) Szorbeálódott arzén móljainak száma / az adagolt vas vagy alumínium móljainak száma Az oldatban maradó egyensúlyi arzén-koncentráció (  M) Forrás: Edwards (1994) Az „előre létrehozott” pelyhek és az in-situ pehelyképződés hatékonyságának összehasonlítása

Más kutatási eredmények: Az alkalmazott koaguláns szerepe: pH  7,0 esetén az alumínium- és vas koaguláns hatékonysága közel azonos (ha az adagolt mólok számát tekintjük), azonban magasabb pH értékeken vas-koaguláns adagolása célravezetőbb (Magyarországon a hálózatba bocsátott víz pH-ja > 7) Következtetés: minden nyersvíztípus egyedi vizsgálatot igényel!!!

koaguláns dózis Az eltávolítás hatékonyságát befolyásoló tényezők arzén oxidációs száma pH alkalmazott koaguláns

Koaguláns dózis: A 10 μg/L-es koncentráció eléréséhez 40-szeres Fe/As arány szükséges (mg/L értékeket figyelembe véve) (El-Bahadli, 2000) Saját kísérleti eredmények: a nyersvízminőség nagyon jelentős mértékben befolyásolja az adagolandó koagulálószer mennyiségét! Az arzén koncentráció mértéke az egyéb – vízben jelen lévő – anyagokhoz képest csekély, így az adagolandó koagulálószer mennyiségét alapvetően nem a víz arzéntartalma, hanem a víz egyéb paraméterei határozzák meg Egy példa: szervesanyagtartalom hatása...

Arzenát eltávolítása vas-klorid koagulálószerrel csepeli nyersvízből (KOI = 1 mg/L) és hortobágy-szásztelki nyersvízből (KOI = 12,7 mg/L) készített modell oldatokból (arzén koncentráció ~ 200 ug/L) Szervesanyag tartalom hatása az arzéneltávolításra

Arzenát eltávolítása alumínium-szulfát koagulálószerrel csepeli Nyersvízből (KOI = 1 mg/L) és hortobágy-szásztelki nyersvízből (KOI = 13,7 mg/L) készített modell oldatokból (arzén koncentráció ~ 220 ug/L) Szervesanyag tartalom hatása az arzéneltávolításra

Szükséges Me mmol/LSzükséges fém/arzén mólarány KOI ~ 1KOI ~ 13KOI ~ 1KOI ~ 13 Vas-klorid0,020,256,885,1 Alumínium- szulfát 0,130,844,3272,5 Szervesanyag tartalom hatása az arzéneltávolításra A szükséges fém/arzén mólarány 10 ug/L-es arzénkoncentráció Eléréséhez (~ 220 ug/L kezdeti arzén koncentráció esetén) alacsony (KOI = ~ 1 mg/L) és magas (KOI ~ 13 mg/L) szervesanyag tartalmú vizek esetén

Technológiai sorok kialakítása

Cl 2 Fe(III)- flokk. Cl 2 gázmentesítés VITUKI – VÍZGÉPTERV által kidolgozott technológia (Kiss & Kelemen, 1985) Up-flow rendszerű szűrő mélységi szűrés

2HCO Ca(OH) 2 Ca CO H 2 O 2Ca CO CaCO 3 Mg 2+ + Ca(OH) 2 Mg(OH) 2 + Ca 2+ Vízlágyítás Ca(OH) 2 adagolásával

Vízlágyítás Na 2 CO 3 adagolásával 2Ca 2+ + Na 2 CO 3 CaCO 3 + Na +

Az arzén eltávolítása meszes vízlágyítás során: Adszorpció a keletkezett csapadék felületén Koprecipitáció: Mg(OH) 2 - ba történő beépülés

Cl 2 Fe(III)- Na 2 CO 3 vagy Ca(OH) 2 Cl 2 gázmentesítés vízlágyítás

Cl 2 Fe(III)- Ca(OH) 2 Cl 2 KMnO 4 gázmentesítés Vízlágyítás és pH szabályozás bedolgozott szűrőréteg (mangántalanítás)

vegyszerbekeverők puffer tartály flotálóutószűrő utó- fertőtlenítés nyers víz oxidálószer koagulálószer flokkulálószer fertőtlenítőszer ARZÉNMENTESÍTÉSI TECHNOLÓGIA VÁZLATA

Iszapkezelés lépései (Szeghalmi vízmű) : Ülepítő medence az ülepítés polielektrolit adagolásával történhet, amely az ülepedést gyorsítja Iszap átemelése a kondicionáló tartályba zeolit por adagolásával egyidejűleg Gépi víztelenítés (szűrőprés) A besűrített anyag konténerbe ürítése iszapkihordó csigával II. osztályú veszélyes hulladék; az elhelyezés feltétele min. 40 % szárazanyagtartalom  veszélyes hulladék lerakó

Iszapkezelés lépései (Dél-Bács-Kiskun megyei vízmű) : Ülepítő medence (10-15 óra tartózkodási idő) a felső fázis a települési csapadékcsatorna hálózatba kerül vagy visszavezetik a víztisztítási folyamat elejére Az iszap szárazanyag tartalma ülepítés után: 4-5 % Kaviccsal töltött (1-2 mm átmérőjű) drénezett szikkasztóágy tartózkodási idő: néhány nap Szikkasztás után a szárazanyag tartalom: 20 % Az iszapelhelyezés történhet betonba bedolgozással (?) vagy az aszódi veszélyes hulladék lerakóban

Alkalmazott technológiaArzén-eltávolító mechanizmus Koaguláció és szilárd/folyadék fázisszétválasztás kicsapatás adszorpció koprecipitáció Aktivált alumínium-oxidon történő adszorpció adszorpció Granulált vas-hidroxidon történő adszorpció adszorpció Ioncserés eljárásspeciális adszorpció Meszes vízlágyítás során történő arzén eltávolítás adszorpció a csapadék felületén, koprecipitáció Membrán technológiáknyomás hatására történő szilárd/folyadék fázisszétválasztás Szűrés mangán zöldhomokon keresztül katalitikus oxidáció, majd ezt követően adszorpció