VÍZFOLYÁSOK OXIGÉN- HÁZTARTÁSA
EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) LÉGKÖRI OXIGÉNBEVITEL O2O2 KÉTVÁLTOZÓS TRANSZPORT!
SZENNYVÍZ HATÁSA (EMISSZIÓ – IMMISSZIÓ) BOI 5 emisszió nő, BOI 5 koncentráció nő, oldott O 2 koncentráció csökken (és fordítva) O 2 fontos vízminőségi indikátor JELLEMZŐ O 2 ÉRTÉKEK nyers szennyvíz: O mg/l telítési koncentráció “tiszta” vízben (Henry törvény): ~ 10 mg/l (20 °C ) halak megóvása, szaporodása: 6 mg/l eltérő érzékenység: ivadék kora, halfajok (pl. pisztráng 6-7 mg/l, ponty 4 mg/l) Vízhasználatok: szabványban meghatározva integrált osztályozás (több paraméterrel)
ANYAGMÉRLEG SZERVESANYAG (C, N) ÜLEDÉK LÉGZÉS LÉGKÖRI DIFFÚZIÓ FOTOSZINTÉZIS MELLÉKFOLYÓK V dC/dt = Be – Ki + O 2diff – C lebomlás – Nitrifikáció – Üledék + Fotoszintézis – Légzés ± Mellékfolyók
Szerves C lebomlása nap O 2 fogyasztás BOI 5 BOI 5 L Oxigén fogyasztás (BOI – Biokémiai oxigén igény) ~ 2.7 szerves C L – maradék oxigén igény (BOI) L0L0 L 0 =BOI 1. rendű kinetika L=L 0 exp(-k 1 t) BOI 5 = BOI - BOI exp(-k 1 5)= BOI (1-exp(-k 1 5)) BOI=L 0 - L 0 exp(-k 1 t)=L 0 (1-exp(-k 1 t))
Lebomlási tényező (k 1 ) Lebontási folyamatok sebességét jelzi, kinetikai állandó Dimenzió: 1/nap Hőmérsékletfüggő = 1.04 (1.06) T k1k1 20C 1 Érvényesség! Függ a szennyvíztisztítás mértékétől Biológiai tiszt Mechanika+kémiai kicsapás Mechanika Nincs tisztítás fk 1 (T=20C)Technológia
Nitrifikáció (egyszerű megközelítés) 5 20 nap BOI BOI C BOI N Kjeldahl N (Szerves N, NH4-N, NO2) 2 lépés: Nitrosomonas2NH O 2 2NO H 2 O + 4H + Nitrobacter2NO O 2 2NO g O g O 2 4.57 g O 2 L N = 4.57 KjeldahlN Feltételek: Nitrifikáló (obligát aerob autotróf) baktériumok, Nem savas környezet (pH>6), Oxigén jelenléte, oldott oxigén > 1-2 mg/l, Toxikus anyagok gátolják! Legegyszerűbb leírás: BOI = CBOI + NBOI (együtt kezeljük)
Oxigén bevitel (légköri diffúzió) C < Csdiffúzió a légkörből, C tart a telítési szinthez C Cs – telítési koncentráció (adott T-n) Henry törvény: p = He Cs p – parciális nyomás He – Henry szám f(T, P, sótartalom, stb.) T Cs sótartalom C s (mg/l)T (°C) Nyári meleg, hőszennyezés!
Oxigén bevitel (légköri diffúzió) – határfelületi filmen át C V hh D mol : Molekuláris diff. tényező (m 2 /s) Oxigén átadási tényező (m/nap) Fajlagos oxigén beviteli tényező (1/nap)
Oxigén beviteli tényező (k 2 ) Mi befolyásolja? Vízmélység Áramlás jellemzői (sebesség, turbulencia,...) Empíriák Érvényesség, dimenzió!!! EPA procedúrak 2 /nap (nomogram-sorozat) Mérés Helyszíni nyomjelzős kísérletek illékony gáz injektálásával (etilén, propán, propilén, kripton)
Folyóra Q, v Lh, Ch q, Lszv, Cszv Feltételek: permanens (Q(t), E(t)=konst), 1D (csak hosszirányú változás) Szervesanyag (L): Vagy:Levonulási idő (utazunk a folyón), felt.: v(t) = const. L 0 számítása (1D): Azonnali elkeveredés !!!
Folyóra Oldott oxigén: D = Cs-C deficit, felt.: Cs(t) = const. Q, v Lh, Ch q, Lszv, Cszv
Folyóra Q, v Lh, Ch q, Lszv, Cszv L x, t* Lh L0L0 C x, t* Ch C0C0 Cs C min x krit, t* krit D0D0 D max
Kritikus hely meghatározása Minimum: 0 2 1.5 – 2 nap Hígulás szerepe: L 0, D 0 D max, C min !!! Több szennyező: szuperponálható! (lin. leíró egyenletek) Szabályozáskor iterációs számítások (eltáv. hatásfok, lebomlási tényező)
Példa következik!
Oldott oxigén- és BOI - hossz szelvények
Több szennyvízbevezetés Q, v Lh, Ch q 1, Lszv 1, Cszv 1 x, t* L Lh L0L0 C Ch C0C0 Cs C min x krit, t* krit D0D0 D max Lh 2 q 2, Lszv 2, Cszv 2 Ch 2 L 02 D 02 Szuperponálás!
O 2 BEVITEL x (km) Oldott oxigén (mg/l) Streeter & Phelps (1925, Ohio folyó) BOI O2O2 TERHELÉS Tervezés: kisvízi permanens vízhozamra Vízhozam időbeli változásának hatásai (t* kr, D max )
Anaerob szakasz számítása (eddigiek aerobra voltak igazak!) Nagy terhelés Időszakos vagy állandósult anaerob állapot Anaerob lebomlás, gázképződés, fémek visszaoldódása C t* L x1x1 1. Anaerob szakasz kezdete: x 1 (C=0) 2. Anaerob szakasz (dC/dt = 0, C = 0): x1x1 L1L1 3. Anaerob szakasz vége: x 2 x2x2 L2L2 x2x2 Lineáris fv.
Streeter-Phelps (1925) Továbbfejlesztések: 1.Szervesanyag oldott és ülepedő frakciók különválasztása 2.Üledék oxigén igénye 3.Nitrifikáció – részletes vizsgálat 4.Fotoszintézis, légzés Részletes oxigénháztartás vizsgálata
Szervesanyag oldott és ülepedő frakciók különválasztása L p = f p L partikulált (ülepedik) L d = f d L oldott (lebomlik) t L0L0 ülepedés Biológiai oxidáció
Üledék oxigén igénye Okok: -szennyvíz ülepedő részecskéi iszapréteget képeznek -elhalt állatok, növények, falevelek felhalmozódása -plankton (alga) ülepedés Magas szervesanyag tartalmú üledék (iszap): -felső részében aerob, alsó részében anaerob lebomlási folyamatok oxigén elvonása a vízből -lebomlás CO 2, CH 4, H 2 S képződés -gázképződés felszálló buborékok, iszap flotációja -esztétikai problémák Közelítés: konstans megoszló terhelés – SOD (g O 2 / m 2,nap) (0.07)Árapályos folyamtorkolati iszap (0.5)Homokos fenék 1-2 (1.5)Szennyvízbevezetés alatti szakaszon (4)Települési szennyvíz(iszap) bevezetés környezetében S (gO 2 /m 2,nap)Üledék
Nitrifikáció-részletes vizsgálat 1 2 Egyszerű (TN) N forgalom N1 N2 N3 Ülepedés Denitrifikáció Növényi asszimiláció Hidrolízis, ammonifi- káció Nitrifikáció O2O2O2O2 N1 – szerves N, N2 – NH4-N N3 – NO2-N, NO3-N N1N1 N2N2 N3N3 Oldott O 2 egyenletbe: dC/dt = -k N 2 Oldott O 2 egyenletbe: dC/dt = -k N L N L N = 4.57 TKN
Fotoszintézis, légzés 6CO 2 + 6H 2 0 C 6 H 12 O 6 + 6O 2 Napfény, klorofill Fotoszintézis (P mgO 2 /m 3,nap) Légzés (R mgO 2 /m 3,nap) t (h) P 24 t (h) O2O2 24 Cs túltelítettség CC t1t1 t2t2 Pa Pm Napi átlagos O 2 termelés: fotoperiódus Oldott O 2 egyenletbe: Mérés: „sötét-világos palack” módszer Számítás: Chl-a tartalom alapján Vízinövények respirációja
Oxigén vonal (ill. összes oldott oxigén deficit) számítása Deficit kezdeti értéke Szerves C lebontás Nitrifikáció Üledék oxigén igénye Fotoszintézis Vízinövényzet légzése