VÍZFOLYÁSOK OXIGÉN- HÁZTARTÁSA. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) LÉGKÖRI OXIGÉNBEVITEL O2O2 KÉTVÁLTOZÓS.

Slides:



Advertisements
Hasonló előadás
Nitrogén vizes környezetben
Advertisements

Horváth Gábor Környezetmérnöki Kft
A szennyvíztisztítás biokinetikai problémái a gyakorlatban.
A LÉGKÖRI NYOMANYAGOK FORRÁSAI ÉS NYELŐI
Porleválasztó berendezések
Gáz-folyadék fázisszétválasztás
Dr. Clement Adrienne Felszíni vizek minősége és terhelhetősége: a vízminőség-szabályozás új feltételrendszere a VKI tükrében BME VÍZI KÖZMŰ ÉS KÖRNYEZETMÉRNÖKI.
Akvapónia üzemeltetés Aquaponics operation and maintenance
Érzékenységvizsgálat
Környezettechnika Modellezés Biowin-nel Koncsos Tamás BME VKKT.
Felszíni vizek minősége
Innovatív szennyvíztechnológiai módszerek a felszíni vizekbe kerülő prioritás szennyezőanyag terheléseinek csökkentésére Dr. Fleit Ernő, egyetemi docens.
Vízminőségi jellemzők
FOLYÓVIZEK OXIGÉN HÁZTARTÁSA
TRANSZPORT FOLYAMATOK
FOLYÓVIZEK OXIGÉN HÁZTARTÁSA
Kémiai szennyvíztisztítás
Talaj 1. Földkéreg felső, termékeny rétege
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek.
A levegőkörnyezet állapotának értékelése modellszámításokkal
SZEKTOR EMISSZIÓ ÁLLAPOT HATÁS Ipar VOC Felszíni ózon Mezőgazd. termés Közlekedés Energia termelés Háztartás Mezőgazd. NO x NH 3 PM SO 2 PM koncentráció.
Környezeti elemek védelme III. Vízvédelem KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
KÖRNYEZETVÉDELEM VÍZVÉDELEM.
MIÉRT NEM MÉRHETŐ? E + S P + E mol/dm3!!!!
MIÉRT NEM MÉRHETŐ? E + S P + E mol/dm3!!!!
FERMENTÁCIÓS RENDSZEREK LEVEGŐELLÁTÁSA
Vízminőségi modellezés. OXIGÉN HÁZTARTÁS.
Eleveniszapos szennyvíztisztítás modellek
Az anaerob rothasztók ellenőrzése és biokémiai jellemzése
Produkcióbiológia, Biogeokémiai ciklusok
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
KÖRNYEZETI RENDSZEREK MODELLEZÉSE
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
KÉMIAI KEZELÉS ALKALMAZÁSA A SZENNYVÍZTISZTÍTÁSBAN
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
TÓ FOLYÓ VÍZMINŐSÉGSZABÁLYOZÁSI PÉLDA  C H3 Célállapot (befogadó határérték) Oldott oxigén koncentráció ChChChCh  C H2  C H2 - a 13 E 1 (1-X 1 ) - a.
VÍZFOLYÁSOK OXIGÉN HÁZTARTÁSA. SZENNYVÍZ HATÁSA (EMISSZIÓ – IMMISSZIÓ) BOI 5 emisszió nő, BOI 5 koncentráció nő, oldott O 2 koncentráció csökken (és fordítva)
Érzékenységvizsgálat
TRANSZPORTFOLYAMATAI
Példa: a Streeter-Phelps vízminőségi modell kalibrálása
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
-Érzékenység a paraméterek hibáira, -érzékenység a bemenő adatok hibáira Nézzünk egy egyszerű példát...
Emberi tevékenység Levegő Víz Föld Élővilág Művi környezet Ember Ökoszisztéma Települési környezet Táj.
11.ea.
Érzékenységvizsgálat a determinisztikus modell
Transzportfolyamatok II. 3. előadás
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
Visszatérve a 3 szennyező példához: Három szennyezőforrás esetén a gazdaságilag legkedvezőbb megoldás kiépítését szeretnénk hatósági eszközökkel elősegíteni.
Felszíni víz monitoring
Környezeti rendszerek modellezése
FOLYÓVIZEK OXIGÉN HÁZTARTÁSA
Nitrifikáció vizsgálata talajban
Vízminőség védelem A víz az ember számára: táplálkozás, higiénia, egészségügy, közlekedés, termelés A vízben található idegen anyagok - oldott gázok -
Energia-visszaforgatás élelmiszeripari szennyvizekből
Vízszennyezés.
II. RÉSZ OLAJSZENNYEZÉSEK.
Zsuga Katalin – Szabó Attila: A Tisza hazai vízgyűjtőterületének ökológiai állapota, környezetvédelmi problémái Győri Katalin Dorottya geográfus III. évf.,
KÖRNYEZETI MODELLEK MI A CÉLJA A MODELLEZÉSNEK? (MIBEN SEGÍTENEK A KÖRNYEZETI MODELLEK? BONYOLULT RENDSZEREK MEGISMERÉSE (Segítenek a kölcsönhatások.
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
TRANSZPORTFOLYAMATOK (ELKEVEREDÉS, SZENNYEZŐANYAGOK TERJEDÉSE)
Vízminőség-védelem 10. ea.
TRANSZPORTFOLYAMATOK TRANSZPORTFOLYAMATOK (ELKEVEREDÉS, SZENNYEZŐANYAGOK TERJEDÉSE) BME Vízi Közmű és Környezetmérnöki Tanszék ftp://vkkt.bme.hu.
VÍZMINŐSÉGI PROBLÉMÁK
Egy termálfürdő használt vizének vizsgálata, felszíni vízfolyásba való bevezetésének modellezése, és a fellépő környezetterhelések minimalizálásának lehetőségei.
A biológiai és a kémiai szennyvíztisztítás szimbiózisa
BAKTERIÁLIS SZENNYEZÉS
VÍZMINŐSÉG,VÍZSZENNYEZÉSEK. VÍZMOLEKULA - H 2 O 1.4 milliárd km 3, a földkéreg felszínének 71 %-át borítja víz KÜLÖNLEGES KRISTÁLYSZERKEZET  SŰRŰSÉG.
A vízszennyezés minden, ami a vízminőséget kedvezőtlenül befolyásolja
Ökológiai szempontok a szennyvíztisztításban
VÍZMINŐSÉGSZABÁLYOZÁSI PÉLDA
Előadás másolata:

VÍZFOLYÁSOK OXIGÉN- HÁZTARTÁSA

EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) LÉGKÖRI OXIGÉNBEVITEL O2O2 KÉTVÁLTOZÓS TRANSZPORT!

SZENNYVÍZ HATÁSA (EMISSZIÓ – IMMISSZIÓ) BOI 5 emisszió nő, BOI 5 koncentráció nő, oldott O 2 koncentráció csökken (és fordítva) O 2 fontos vízminőségi indikátor JELLEMZŐ O 2 ÉRTÉKEK nyers szennyvíz: O mg/l telítési koncentráció “tiszta” vízben (Henry törvény): ~ 10 mg/l (20 °C ) halak megóvása, szaporodása:  6 mg/l eltérő érzékenység: ivadék kora, halfajok (pl. pisztráng 6-7 mg/l, ponty 4 mg/l) Vízhasználatok: szabványban meghatározva integrált osztályozás (több paraméterrel)

ANYAGMÉRLEG SZERVESANYAG (C, N) ÜLEDÉK LÉGZÉS LÉGKÖRI DIFFÚZIÓ FOTOSZINTÉZIS MELLÉKFOLYÓK V dC/dt = Be – Ki + O 2diff – C lebomlás – Nitrifikáció – Üledék + Fotoszintézis – Légzés ± Mellékfolyók

Szerves C lebomlása nap O 2 fogyasztás BOI  5 BOI 5 L Oxigén fogyasztás (BOI – Biokémiai oxigén igény) ~ 2.7 szerves C L – maradék oxigén igény (BOI) L0L0 L 0 =BOI  1. rendű kinetika L=L 0 exp(-k 1 t) BOI 5 = BOI  - BOI  exp(-k 1 5)= BOI  (1-exp(-k 1 5)) BOI=L 0 - L 0 exp(-k 1 t)=L 0 (1-exp(-k 1 t))

Lebomlási tényező (k 1 ) Lebontási folyamatok sebességét jelzi, kinetikai állandó Dimenzió: 1/nap Hőmérsékletfüggő  = 1.04 (1.06) T k1k1 20C 1 Érvényesség! Függ a szennyvíztisztítás mértékétől Biológiai tiszt Mechanika+kémiai kicsapás Mechanika Nincs tisztítás fk 1 (T=20C)Technológia

Nitrifikáció (egyszerű megközelítés) 5 20 nap BOI BOI C BOI N Kjeldahl N (Szerves N, NH4-N, NO2) 2 lépés: Nitrosomonas2NH O 2  2NO H 2 O + 4H + Nitrobacter2NO O 2  2NO g O g O 2  4.57 g O 2 L N = 4.57 KjeldahlN Feltételek: Nitrifikáló (obligát aerob autotróf) baktériumok, Nem savas környezet (pH>6), Oxigén jelenléte, oldott oxigén > 1-2 mg/l, Toxikus anyagok gátolják! Legegyszerűbb leírás: BOI = CBOI + NBOI (együtt kezeljük)

Oxigén bevitel (légköri diffúzió) C < Csdiffúzió a légkörből, C tart a telítési szinthez C Cs – telítési koncentráció (adott T-n) Henry törvény: p = He Cs p – parciális nyomás He – Henry szám f(T, P, sótartalom, stb.) T Cs sótartalom C s (mg/l)T (°C) Nyári meleg, hőszennyezés!

Oxigén bevitel (légköri diffúzió) – határfelületi filmen át C V hh D mol : Molekuláris diff. tényező (m 2 /s) Oxigén átadási tényező (m/nap) Fajlagos oxigén beviteli tényező (1/nap)

Oxigén beviteli tényező (k 2 ) Mi befolyásolja? Vízmélység Áramlás jellemzői (sebesség, turbulencia,...) Empíriák Érvényesség, dimenzió!!! EPA procedúrak 2  /nap (nomogram-sorozat) Mérés Helyszíni nyomjelzős kísérletek illékony gáz injektálásával (etilén, propán, propilén, kripton)

Folyóra Q, v Lh, Ch q, Lszv, Cszv Feltételek: permanens (Q(t), E(t)=konst), 1D (csak hosszirányú változás) Szervesanyag (L): Vagy:Levonulási idő (utazunk a folyón), felt.: v(t) = const. L 0 számítása (1D): Azonnali elkeveredés !!!

Folyóra Oldott oxigén: D = Cs-C deficit, felt.: Cs(t) = const. Q, v Lh, Ch q, Lszv, Cszv

Folyóra Q, v Lh, Ch q, Lszv, Cszv L x, t* Lh L0L0 C x, t* Ch C0C0 Cs C min x krit, t* krit D0D0 D max

Kritikus hely meghatározása Minimum:  0  2  1.5 – 2 nap Hígulás szerepe: L 0, D 0  D max, C min !!! Több szennyező: szuperponálható! (lin. leíró egyenletek) Szabályozáskor iterációs számítások (eltáv. hatásfok, lebomlási tényező)

Példa következik!

Oldott oxigén- és BOI - hossz szelvények

Több szennyvízbevezetés Q, v Lh, Ch q 1, Lszv 1, Cszv 1 x, t* L Lh L0L0 C Ch C0C0 Cs C min x krit, t* krit D0D0 D max Lh 2 q 2, Lszv 2, Cszv 2 Ch 2 L 02 D 02 Szuperponálás!

O 2 BEVITEL x (km) Oldott oxigén (mg/l) Streeter & Phelps (1925, Ohio folyó) BOI O2O2 TERHELÉS Tervezés: kisvízi permanens vízhozamra Vízhozam időbeli változásának hatásai (t* kr, D max )

Anaerob szakasz számítása (eddigiek aerobra voltak igazak!) Nagy terhelés Időszakos vagy állandósult anaerob állapot Anaerob lebomlás, gázképződés, fémek visszaoldódása C t* L x1x1 1. Anaerob szakasz kezdete: x 1 (C=0) 2. Anaerob szakasz (dC/dt = 0, C = 0): x1x1 L1L1 3. Anaerob szakasz vége: x 2 x2x2 L2L2 x2x2 Lineáris fv.

Streeter-Phelps (1925) Továbbfejlesztések: 1.Szervesanyag oldott és ülepedő frakciók különválasztása 2.Üledék oxigén igénye 3.Nitrifikáció – részletes vizsgálat 4.Fotoszintézis, légzés Részletes oxigénháztartás vizsgálata

Szervesanyag oldott és ülepedő frakciók különválasztása L p = f p L partikulált (ülepedik) L d = f d L oldott (lebomlik) t L0L0 ülepedés Biológiai oxidáció

Üledék oxigén igénye Okok: -szennyvíz ülepedő részecskéi iszapréteget képeznek -elhalt állatok, növények, falevelek felhalmozódása -plankton (alga) ülepedés Magas szervesanyag tartalmú üledék (iszap): -felső részében aerob, alsó részében anaerob lebomlási folyamatok  oxigén elvonása a vízből -lebomlás  CO 2, CH 4, H 2 S képződés -gázképződés  felszálló buborékok, iszap flotációja -esztétikai problémák Közelítés: konstans megoszló terhelés – SOD (g O 2 / m 2,nap) (0.07)Árapályos folyamtorkolati iszap (0.5)Homokos fenék 1-2 (1.5)Szennyvízbevezetés alatti szakaszon (4)Települési szennyvíz(iszap) bevezetés környezetében S (gO 2 /m 2,nap)Üledék

Nitrifikáció-részletes vizsgálat 1 2 Egyszerű (TN) N forgalom N1 N2 N3 Ülepedés Denitrifikáció Növényi asszimiláció Hidrolízis, ammonifi- káció Nitrifikáció O2O2O2O2 N1 – szerves N, N2 – NH4-N N3 – NO2-N, NO3-N N1N1 N2N2 N3N3 Oldott O 2 egyenletbe: dC/dt = -k N 2 Oldott O 2 egyenletbe: dC/dt = -k N L N L N = 4.57 TKN

Fotoszintézis, légzés 6CO 2 + 6H 2 0  C 6 H 12 O 6 + 6O 2 Napfény, klorofill Fotoszintézis (P mgO 2 /m 3,nap) Légzés (R mgO 2 /m 3,nap) t (h) P 24 t (h) O2O2 24 Cs túltelítettség CC t1t1 t2t2 Pa Pm Napi átlagos O 2 termelés: fotoperiódus Oldott O 2 egyenletbe: Mérés: „sötét-világos palack” módszer Számítás: Chl-a tartalom alapján Vízinövények respirációja

Oxigén vonal (ill. összes oldott oxigén deficit) számítása Deficit kezdeti értéke Szerves C lebontás Nitrifikáció Üledék oxigén igénye Fotoszintézis Vízinövényzet légzése