Halmazállapotok Kristályos anyagok, atomrács

Slides:



Advertisements
Hasonló előadás
Moduláris oktatás a 8. évfolyam kémia tantárgyból
Advertisements

ötvözetek állapotábrája
METALLOGRÁFIA (fémfizika) ÖTVÖZETEK TÍPUSAI.
Kristályrácstípusok MBI®.
Rácstípusok.
Halmazállapotok Részecskék közti kölcsönhatások
SZTOECHIOMETRIAI SZÁMÍTÁSOK A REAKCIÓEGYENLET ALAPJÁN
Atomrácsos kristályok
Szervetlen kémia Hidrogén
1. Termodinamikai alapfogalmak Mire kell? A mindennapi gyakorlatban előforduló jelenségek (például fázisátalakulások, olvadás, dermedés, párolgás) értelmezéséhez,
Kémia Kovács Attila terméktervezőknek
Kémiai alapozó labor a 13. H osztály részére 2011/2012
A FÉMEK ÁLTALÁNOS JELLEMZÉSE
Az anyag tulajdonságai és változásai
Hőtermelő és hőelnyelő folyamatok
A HIDROGÉN.
KOLLOID OLDATOK.
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Anyagismeret 2. Fémek és ötvözetek.
Heterogén kémiai egyensúly
Színfémek SZÍNFÉMEK.
Ötvözetek ötvözetek.
Kémiai reakciók katalízis
Halmazállapotok Gáz Avogadro törvénye: azonos nyomású és hőmérsékletű gázok egyenlő térfogatában – az anyagi minőségtől, molekula méretétől függetlenül.
Reakciók vizes közegben, vizes oldatokban
Mi a reakciók végső hajtóereje?
A moláris kémiai koncentráció
Reakciók hőeffektusa, hőszínezete, a reakcióhő
Tartalom Anyagi rendszerek csoportosítása
Kémiai baleset egy fővárosi gimnáziumban, öten megsérültek
A fémrács.
TALAJ KÉMIAI TULAJDONSÁGAI
8. Szilárd anyagok Kristályos anyagok: határozott olvadáspont, hasad, elemi cella, rácstípus, szimmetria, polimorfizmus (pl. NaCl, SiO2) Amorf anyagok:
Halmazállapot-változások
A réz-csoport I. A réz.
Kémiai kötések Kémiai kötések.
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
ÖSSZEGOGLALÁS KEVERÉKEK OLDATOK ELEGYEK.
Kémiai egyensúlyok. CH 3 COOH + C 2 H 5 OH ↔ CH 3 COOC 2 H 5 + H 2 O v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 2 = k 2 [CH.
Halmazállapotok Gáz, folyadék, szilárd.
Oldatkészítés, oldatok, oldódás
Kémiai reakciók Kémiai reakció feltételei: Aktivált komplexum:
Halmazállapotok Gáz Avogadro törvénye: azonos nyomású és hőmérsékletű gázok egyenlő térfogatában – az anyagi minőségtől, molekula méretétől függetlenül.
Ionok, ionvegyületek Konyhasó.
1 Kémia Atomi halmazok Balthazár Zsolt Apor Vilmos Katolikus Főiskola.
Általános kémia előadás Gyógyszertári asszisztens képzés
Helyük a periódusos rendszerben Felhasználásuk Közös tulajdonságaik Kivételek Szabadon mozgó elektronfelhő Fémes kötés.
Oldat = oldószer + oldott anyag (pl.: víz + só, vagy benzin + olaj )
Atomkristályok. Az atomkristály Atomtörzsek rendezett halmaza: benne nem meghatározott számú atomot kovalens kötések rögzítenek.
KÉMIAI REAKCIÓK. Kémiai reakciók Kémiai reakciónak tekintünk minden olyan változást, amely során a kiindulási anyag(ok) átalakul(nak) és egy vagy több.
Fémek. Az elemeket 3 csoportba osztjuk: fémek Félfémek vagy átmeneti fémek nemfémek.
Szilárd anyagok: 1.Felépítő részecskéik: a.Atomok: pl.: gyémánt: C, szilícium: Si, kvarc: SiO 2 b.Ionok: pl.:, mészkő: CaCO 3,mész: CaO, kősó: NaCl c.Fém-atomtörzsek:
Halmazállapotok Kristályos anyagok, atomrács
GÁZOK, FOLYADÉKOK, SZILÁRD ANYAGOK
A kémiai egyenlet.
Atomrácsos kristályok
Fizikai kémia 2 – Reakciókinetika
Fizikai kémia 2 – Reakciókinetika
Áramlástani alapok évfolyam
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
HalmazállapotOK.
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Kémiai kötések.
Termokémia.
HalmazállapotOK.
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Reakciókinetika.
OLDATOK.
Előadás másolata:

Halmazállapotok Kristályos anyagok, atomrács Szilárd anyagok: kémiai kötések az atomok/ionok/molekulák között Amorf: a részecskék elhelyezkedése rendezetlen, vagy csak kis körzetekben rendezett. Nincs határozott olvadáspontjuk = op (lágyulás → folyadék) Kristályos anyagok: a részecskék a tér minden irányában szabályos rendben helyezkednek el. Jól definiált (anyag azonosítására is használt) olvadáspontjuk van. Atomrács: rácspontokban atomok, melyek irányított egyszeres (s) kovalens kötéssel kapcsolódnak egymáshoz: gyémánt, Si, Ge, B, SiO2, ZnS, SiC Kemények, hőt és elektromosságot nem vezetik, op magas, sem vízben, sem szerves oldószerekben nem oldódnak. Gyémánt (Si, Ge, ZnS, SiC) Minden C atom körül tetra-éderes elrendeződésben van a többi azonos távol-ságra, azonos kötésszöggel. 109.5º

Halmazállapotok Fémrács aranyrög + Jellemzők: Rácspontokban pozitív töltésű fém atomtörzsek, amiket hozzájuk közösen tartozó delokalizált elektronok kötnek össze → vezetőképesség Erős kötés: kemény, magas op (Cr, W) Szürke szín (kivétel Cu, Au): minden típusú fotont elnyel (e--k gerjesztődnek) Oldhatóság: egymás olvadékaiban → ötvözet, ill. kémiai átalakulással savakban Leggyakoribb rácstípusok: térben középpontos kockarács lapon középpontos kockarács hatszöges rács (Na, K, Fe, Cr) (Au, Ag, Al, Cu) (Mg, Ni, Zn) mindenféle puha, megmunkálható kemény, rideg

Halmazállapotok Fémrács: ötvözetek Az ötvözet fémes anyag, mely legalább két kémiai elemből áll, s legalább az egyik fém. Legismertebbek: acél, sárgaréz (réz + cink), bronz (ón + réz) Fizikai tulajdonságok, mint a sűrűség, reakciókészség, rugalmassági modulus, elektromos- és hővezető képesség általában nem mutatnak nagy eltérést az alkotóelemekéhez képest, de a mechanikai tulajdonságok, mint a szakító- és nyírószilárdság lényegesen különbözhetnek. Oka az atomok különböző mérete: a nagyobb atomok nyomóerőt fejtenek ki a szomszédos atomokra, míg a kisméretű atomok húzóerővel hatnak a szomszédjaikra, ami fokozza az ötvözet deformációval szembeni ellenálló képességét. Előállítás: elsősorban fémek megolvasztásával és összekeverésével. A tiszta fémekkel ellentétben a legtöbb ötvözetnek nem jól definiált olvadáspontja van, hanem olvadási tartománya: Szolidusz: az a hőmérsékletet, amelyen az olvadás megkezdődik Likvidusz: az a hőmérsékletet, amelyen az olvadás befejeződik Eutektikus ötvözet: alkotóknak egy olyan aránya, amikor egyetlen olvadáspont létezik

Halmazállapotok Ötvözetek: szilárd oldat Olyan szilárd halmazállapotú homogén keverék, melyben a kisebb mennyiségű ”oldott anyag” nem változtatja meg az oldószer kristályszerkezetét. A szerepek fel is cserélődhetnek. hasonló atomsugarak (<15% eltérés) azonos kristályszerkezet hasonló elektronegativitás hasonló vegyérték folyadék folyadék+szilárd szilárd oldat Fázisdiagram (K) T2 T1 100%B 100%A xszilárd xfolyadék 70%A, 30%B 10%A, 90%B A és B keverékének olvadása (hal-görbe): T2 alatt csak szilárd anyag van T1 felett csak olvadék van a görbe belsejében olvadék+szilárd keverék T1 – T2 között a szilárd illetve folyadék komponens összetétel a nyilak alapján likvidusz görbe szolidusz görbe

Halmazállapotok Ötvözetek Kétkomponensű rendszer eutektikus ponttal: Folyadék T p=állandó x% szilárd A + B szilárd A + folyadék szilárd B + Eutektikus pont, hőmérséklet A B A és B nem képez szilárd oldatot, a szilárd fázis a két anyag kristályainak heterogén keveréke Az eutektikus összetételű szilárd keverék egyszerre megolvad (úgy viselkedik, mintha egy anyagból állna), a többi összetételnél az olvadás egy hőmérséklet tartományban történik Csoportosítás kristályrács szerint: Helyettesítéses (szubsztitúciós): Az alkotó elemek atomjai hasonló méretűek, így a kristályrácsban egyszerűen helyettesíthetik egymást (pl. sárgaréz). Intersticiós: az egyik alkotóelem atomja lényegesen kisebb a másiknál, és a kisebb atomok beépülnek a nagyobb atomok közti (rácsközi) helyekre. Kristályrács, ami nem hasonlít egyik összetevő kristályrácsához sem (nagyon bonyolult). Ezek nagyon kemény, rideg fémvegyületek, pl. Fe3C (cementit), WC (volfrámkarbid).

Halmazállapotok Ionrács Jellemzők: Rácspontokban szoros illeszkedéssel kationok és anionok vannak. Kifelé semleges. Kemények, ridegek, magas olvadáspontúak, elektromos áramot nem vezetik Olvadékuk és oldataik vezetők Többségük vízben oldódik, ionjaira disszociál Leggyakoribb rácstípusok: CsI, térben középpontos kockarács NaCl, lapon középpontos kockarács

Halmazállapotok Molekularács Jellemzők: Rácspontokban molekulák vannak, melyek másodlagos kötőerőkkel kapcsolódnak egymáshoz. Szinte minden szerves molekula, valamint H2, O2, N2, CO2 (szárazjég), stb. Keménység kicsi, olvadás- és forráspont alacsony, kis sűrűség, áramot sem szilárd, sem olvadt állapotban nem vezetik. Apoláris szerves oldószerekben (pl. CCl4) oldódnak. Hidrogénkötés Dipólus-dipólus kölcsönhatás Diszperziós kölcsönhatás 0.8-12 kJ/mol 8-40 kJ/mol Jég: 16 különböző szilárd fázisú szerkezetben létezik. Hexagonális kristályrendszer

Grafit Három rácstípusból van benne: gyémánt Három rácstípusból van benne: Szénatomok egyszeres s kovalens kötéssel kapcsolódnak 3 szomszédjukhoz (atomrács). A negyedik elektron delokalizáltan van a kovalens kötésű síkokban (fémrács). A hexagonális szerkezetű síkok között másodlagos kötőerők hatnak (molekularács). Ebből adódnak tulajdonságai: Magas op. (3700 ºC) Vezeti az áramot Jó kenőanyag (síkok egymáson elcsúsznak)

Kémiai reakciók reakcióegyenletek A kémiai reakciókban atomok/molekulák/ionok elektronszerkezete változik (kötések bomlanak fel, új kötések jönnek létre): bomlás: CaCO3 = CaO + CO2 egyesülés: NH3 + HCl = NH4Cl atom/atomcsoport csere („cserebomlás”): CaCO3 + HCl = CaCl2 + H2CO3 (→CO2 + H2O) Reakcióegyenlet: reagáló anyagok => termékek tömegmegmaradás: azonos típusú atomok száma mindkét oldalon azonos töltésmegmaradás: töltések összege mindkét oldalon azonos (általában 0 ) kémiai számítások alapja általában az egyenlet. Sztöchiometria: A reakcióegyenlet alapján kiszámítható a reagáló/keletkező anyagok mennyisége.

Kémiai reakciók kémiai számítás Számítási példa: Számítsuk ki hány cm3 1 mol/dm3-es kénsav kell 2 dm3 normál állapotú HCl gáz készítéséhez a következő kiegészítendő reakcióegyenlet alapján: CaCl2 + H2SO4 = CaSO4 + HCl Egyenlet rendezése anyagmegmaradás elve alapján: CaCl2 + H2SO4 = CaSO4 + 2HCl 22,41 dm3 a térfogata 1 mol HCl gáznak normál állapotban (0 ºC, 0,1 MPa) Ez alapján 2 dm3 HCl megfelel (1/22,41)*2=0,089 molnak 2 mol (molekula) HCl fejlesztéséhez kell 1 mol (molekula) H2SO4 0,089 mol HCl fejlesztéséhez kell (1/2)*0,089=0,0445 mol H2SO4 1 mol H2SO4 van 1000 cm3 (1 dm3) 1 mol/dm3-es oldatban 0,0445 mol H2SO4 van (1000/1)*0,0445=44,5 cm3 oldatban Tehát 44,5 cm3 1 mol/dm3-es H2SO4 oldat kell.

Kémiai reakciók kémiai számítás Számítási példa: Számítsuk ki hány g 36 m/m%-os HCl oldat kell 100 g FeCl3 készítéséhez a következő kiegészítendő reakcióegyenlet alapján: Fe2O3 + HCl = FeCl3 + H2O MFe=55.8, MO=16, MCl= 35.5, MH=1 Egyenlet rendezése anyagmegmaradás elve alapján: Fe2O3 + 6HCl = 2FeCl3 + 3H2O Molekulatömegek: MFeCl3=162,3, MHCl=36.5 100 g FeCl3 = (1/162,3)*100 = 0,616 mol 2 mol FeCl3 keletkezése igényel 6 mol HCl-at 0,616 mol FeCl3 keletkezése igényel (6/2)*0,616=1,848 mol = 1,848*36,5=67,452 g HCl-at 36 g HCl van 100 g 36 m/m%-os HCl oldatban 67,452 g HCl van (100/36)*67,452=187,37 g HCl oldatban Tehát 187,37 g 36 m/m%-os HCl oldat kell.

Kémiai reakciók reakcióhő Reakcióhő (Qr, kJ): reakcióegyenlet által definiált reakció hőváltozása A kémiai reakciókban kötések bomlanak fel és új kötések alakulnak ki. Kötésfelbomlás: energia befektetést igényel (+ előjel) Kötés kialakulás: energia szabadul fel (- előjel) Ha fázisátalakulás történik, annak is van energiavonzata. Pl. gáz kondenzálása energia felszabadulással jár a szilárd fázisbeli kötések kialakulása miatt. Exoterm reakció: energia szabadul fel (C + O2 = CO2, Qr < 0) Endoterm reakció: energiát igényel (H2O → H2 + ½O2, Qr > 0) Képződéshő (Qk, kJ/mol): annak a reakciónak az energiaváltozása, melyben egy vegyület 1 mólja standard körülmények (25 ºC, 0,1 MPa) között alapállapotú elemeiből keletkezik. Alapállapotú elemek képződéshője standard körülmények között 0 kJ/mol.

Kémiai reakciók reakcióhő Reakcióhő a képződéshőkből: a termékek együtthatókkal szorzott képződéshői-nek összegéből levonjuk a kiindulási anyagok együtthatókkal szorzott képződés-hőinek összegét. Hess tétel: a reakcióhő független a reakció útjától (általában többféle útvonal van), csak a kezdeti és végállapottól függ. CaCO3 + 2HCl = CaCl2 + CO2 + H2O Qr = QkCaCl2 + QkCO2 + QkH2O – QkCaCO3 – 2QkHCl II. CaCO3 = CaO + CO2 CaO + 2HCl = CaCl2 + H2O Qr = QkCaO + QkCO2 + QkH2O + QkCaCl2 – QkCaO - QkCaCO3 – 2QkHCl A CaO csak átmeneti termék, keletkezik és megszűnik, ezért képződéshője a II. összetett reakcióban kiesik. Reakcióentalpia (DH, kJ): ugyanaz mint a reakcióhő, csak ki van kötve a nyomás állandóságának feltétele (zárt edényben gázok reakciójakor lehet különbség ha mólszám változás van)

Kémiai reakciók Szabadentalpia Entrópia (S, kJ/K): egy rendszer rendezetlenségének mértéke. A rendezetlenség kedvezőbb állapot: kristályos anyag oldódása (oldott anyag oldószerben való eloszlása) gázok keveredése (kibocsátott CO2, füst) A természetes folyamatokat az irányítja, hogy: csökkenjen a rendszer energiája (energia-felszabadulás) növekedjen a rendezetlenség mértéke Ezt fejezi ki a szabadentalpia: G = H – TS Valamely folyamat (kémiai reakció) szabadentalpia változása: DG = DH – TDS Spontán folyamat akkor megy végbe, ha szabadentalpia változás negatív (DG<0). Az entrópia tagnak inkább csak magas hőmérséklet esetén (T > 1500 K) van jelentősége, szobahőmérsékleten általában elhanyagolható, azaz DG ≈ DH G: szabadentalpia, kJ H: entalpia, kJ T: hőmérséklet, K

Kémiai reakciók Kémiai reakció feltételei: Aktivált komplexum: részecskék ütközése – nagyobb koncentrációban gyakoribb: a részecskék megfelelő térhelyzetben legyenek Aktivált komplexum: részecskék ütközés utáni nagyon rövid ideig tartó összekapcsolódása tartalmazza mind a megszűnő, mind a létrejövő kötéseket, de azok sokkal gyengébbek, hosszabbak mint a kiindulási ill. termék molekulákban kötésszögek teljesen mások Aktivált komplexum Reakcióút Termékek DEa DE’a Reaktánsok Reaktánsok Átmeneti komplexum Termék Aktiválási energia (kJ/mol): az az energiatöbblet, amelynek következtében a részecskék átalakulásra képes aktív állapotba jutnak = az aktivált komplexum keletkezéséhez szükséges energia