Gráf Szélességi bejárás/keresés algoritmusa

Slides:



Advertisements
Hasonló előadás
A Floyd-Warshall algoritmus
Advertisements

A Dijkstra algoritmus.
Nevezetes algoritmusok
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G irányított vagy irányítás nélküli, véges gráf. Az eljárás célja a G gráf összes csúcsának bejárása.
Készítette: Major Máté
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G irányított vagy irányítás nélküli, véges gráf. Az eljárás célja a G gráf összes csúcsának bejárása.
Streaming Algorithms for k-core Decomposition. K-mag dekompozíció Maximális részgráf, amiben minden csúcshoz legalább k részgráfbeli csúcs csatlakozik.
Erősen összefüggő komponensek meghatározása
Dijkstra algoritmus Irányított gráfban.
Szélességi bejárás Párhuzamosítása.
Szélességi bejárás , 0.
Dijkstra algoritmus Baranyás Bence. Feladat Adott egy G=(V,E) élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges.
Gráfok szélességi bejárása
Gráf Szélességi bejárás
Gráfok szélességi bejárása Algoritmus bemutatása egy gráfon példa.
Gráf szélességi bejárása. Alapfogalmak G = (V,E)irányított, véges, nem üres gráf d (s,u)két csúcs távolsága lút hossza, élek száma Qsor adatszerkezet.
DAG topologikus rendezés
Prím algoritmus.
1 Györgyi Tamás – GYTNAAI.ELTE 2007 Április 03 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus Bellman-Ford Algoritmusa S a b d e
„Országos” feladat. Feladat: Egy tetszőleges, színes országokat tartalmazó térképen akar eljutni egy kommandós csapat egy országból egy másikba. Viszont.
Dijkstra algoritmus Algoritmusok és adatszerkezetek 2. Újvári Zsuzsanna.
Dijkstra algoritmusa Egy csúcsból a többibe vezető legkisebb költségű út megkeresése Az algoritmus működésének leírása és bemutatása LL.
Szélességi bejárás A szélességi bejárással egy irányított vagy irányítás nélküli véges gráfot járhatunk be a kezdőcsúcstól való távolságuk növekvő sorrendjében.
Gráf szélességi bejárása
Készítette: Lakos Péter.  Adott egy élsúlyozott, véges gráf  Negatív élsúlyokat nem tartalmaz  Lehet irányított vagy irányítatlan  Továbbá adott egy.
Készítette: Lakos Péter.  Adott egy irányított vagy irányítatlan, véges gráf.  Írjuk ki a csúcsokat egy kezdőcsúcstól való távolságuk növekvő sorrendjében.
Dijkstra-algoritmus ismertetése
Algoritmusok II. Gyakorlat 3. Feladat Pup Márton.
Átalakítás előltesztelő ciklusból hátultesztelő ciklusba és fordítva.
Brute Force algoritmus
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G=(V,E) élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges gráf.
Fák.
A Dijkstra algoritmus.
Gráf szélességi bejárása SzB(G,p). Tetszőleges gráf, melyben a p csúcsot választottam kiindulónak: A gráfnak megfelelő fa:
Valós idejű adaptív útvonalkeresés
SZÉLESSÉGI BEJÁRÁS Gréczy Ákos – JKR7ZR. MESE Van egy középkori kisváros, ahol az utcai lámpákat egy korosodó lámpagyújtogató ember gyújtja fel. Egyik.
Készítette: Hanics Anikó. Az algoritmus elve: Kezdetben legyen n db kék fa, azaz a gráf minden csúcsa egy-egy (egy pontból álló) kék fa, és legyen minden.
Prim algoritmusa Gubicza József (GUJQAAI.ELTE). Jellemzők Cél: Adott egyszerű gráfban a min. költségű feszítőfa meghatározása. Algoritmikus szinten: 3.
1 Szélességi Bejárás Györgyi Tamás – GYTNAAI.ELTE 2007 Március 22 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S b a d e f h g c.
1 Dijkstra Algoritmusa Györgyi Tamás – GYTNAAI.ELTE 2007 Április 02 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S a b c d e
Az ábrán az inicializáló blokk lefutása utáni állapotot láthatjuk. A KÉSZ halmazhoz való tartozást színezéssel valósítjuk meg. A nem KÉSZ csúcsok fehérek,
Mélységi bejárás Az algoritmus elve: Egy kezdőpontból kiindulva addig megyünk egy él mentén, ameddig el nem jutunk egy olyan csúcsba, amelyből már nem.
Szélességi bejárás. Kezdőcsúcsból felvétele Innen haladunk egy szinttel mélyebbre, felvesszük az összes olyan csúcsot, amit így elérhetünk Ha elfogytak,
Kruskal-algoritmus.
Szélességi bejárás. Kezdőcsúcs felvétele Innen haladunk egy szinttel lejebb, itt felvesszük az összes olyan csúcsot, amit elérünk Ha elfogytak, akkor.
Bellmann-Ford Algoritmus
Gráfok ábrázolása teljesen láncoltan
Szélességi bejárás. Feladat  Szélességi bejárás módszerrel menjünk végig egy tetszőleges gráfon.  Kikötés: A gráf egyszerű, azaz hurok- és többszörös.
Horváth Bettina VZSRA6.  Célja: Az eljárás célja egy véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő sorrendben.
Útkeresések.
SZÉLESSÉGI BEJÁRÁS Pap Imre DVX468. A bejárás Meglátogatjuk az első csúcsot, majd ennek a csúcsnak az összes szomszédját. Aztán ezen szomszédok összes.
Morvai Mária-Júlia F3D3D4.  Adott egy G=(V,E)élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó,véges gráf. Továbbá adott.
Gráf szélességi bejárása. Cél Az algoritmus célja az, hogy bejárjuk egy véges gráf összes csúcsát és kiírjuk őket a kezdőcsúcstól való távolságuk szerint.
DIJKSTRA- ALGORITMUS. A Dijkstra-algoritmus egy mohó algoritmus, amivel irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges gráfokban.
Gráf szélességi bejárása. A szélességi bejárás elmélete Célja egy véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő.
Gráfalgoritmusok Szélességi bejárás.
Szélességi bejárás Gráf-algoritmusok Algoritmusok és adatszerkezetek II. Gergály Gábor WZBNCH1.
Prim algoritmus Algoritmusok és adatszerkezetek 2. Újvári Zsuzsanna.
Szélességi bejárás. Véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő sorrendben Egy csúcsot egyszer járunk be Egyenlő.
Dijkstra algoritmus. Az algoritmus működése  Kezdésnél a kezdő csúcson kívül minden csúcs távolsága legyen ∞, a kezdő csúcs távolsága 0.  Feltételes.
Gráf Szélességi bejárás Készítette: Giligor Dávid Neptun : HSYGGS.
3. Feladat Szélességi Bejárás FZGAF0 – Pintér László.
Eötvös Konferencia, 2008 április 26. Kovács Máté 1 Útkeresések optimalizálása számítógépes játékokban.
Algoritmus DAG = irányított körmentes gráf. Először ezt a tulajdonságot ellenőrizzük (mélységi bejárással), aztán rendezzük: Q: Sor adatszerkezet, kezdetben.
Szélességi bejárás Pátyerkó Dorina (VTYX9O). Szélességi bejárás algoritmusa Kijelölünk egy kezdőcsúcsot. A csúcs szomszédjait megkeressük, majd betesszük.
A Dijkstra algoritmus.
Gráfok szélességi bejárása Dijkstra algoritmus
Gráfalgoritmusok G=(V,E) gráf ábrázolása
Gráfalgoritmusok G=(V,E) gráf ábrázolása
2-3-fák A 2-3-fa egy gyökeres fa az alábbi tulajdonságokkal:
Előadás másolata:

Gráf Szélességi bejárás/keresés algoritmusa Készítette: Major Máté

Célja és Definíciója Az algoritmus célja az, hogy bejárjuk egy véges gráf összes csúcsát és kiírjuk őket a kezdőcsúcstól való távolságuk szerint növekvő sorrendben. Definíció: Legyen G=(V,E) gráf és s,u ∈V csúcsok, és s ~> u út 〈 〉 k v ,v ,...,v 0 1 ,ahol s=v0 , u=vk.

Az algoritmus elveinek lépései Először el kell érnünk a kezdőcsúcsot. Aztán el kell érnünk a kezdőcsúcstól 1 távolságra lévő csúcsokat. (kezdőcsúcs szomszédjai) Majd a kezdőcsúcstól 2 távolságra lévő csúcsokat (kezdőcsúcs szomszédjainak szomszédjai) Ha egy csúcsot már bejártunk akkor, ha következőleg találkozunk vele nem kell figyelembe venni

mŰveletigény Az algoritmus az inicializáló lépés során minden csúcsnak beállítja a színét. Ennek a műveletigénye: Θ(n) . Él listás ábrázolás: minden csúcsot legfeljebb egyszer teszünk a sorba. T(n) = Θ(n) + Ο(e) = Ο(n + e) Csúcsmátrixos ábrázolás: egy csúcs szomszédjainak a vizsgálata. T(n) = O(n + n * n) = O(n2 )

példa Kezdeti állapota 2 (2,0) példa Kezdeti állapota 4 (4,-1) 6 (6,-1) 9 (9,-1) 12 (12,-1) 10 (10,-1) 14 (14,-1) 20 (20,-1)

Példa lépései Az 2-es csúcsot kivesszük a sorból Az 2-es csúcs elérhető szomszédjait behelyezzük a sorba, majd beszürkítjük őket 2-es csúcsot befeketítjük Majd ezt végigcsináljuk az összes csúccsal.

2 (2,0) 4 (4,1) 6 (6,1) 9 (9,1) 12 (12,-1) 10 (10,-1) 14 (14,-1) 20 (20,-1)

2 (2,0) 4 (4,1) 6 (6,1) 9 (9,1) 12 (12,2) 10 (10,2) 14 (14,-1) 20 (20,-1)

2 (2,0) 4 (4,1) 6 (6,1) 9 (9,1) 12 (12,2) 10 (10,2) 14 (14,-1) 20 (20,2)

2 (2,0) 4 (4,1) 6 (6,1) 9 (9,1) 12 (12,2) 10 (10,2) 14 (14,2) 20 (20,2)

végállapot 2 (2,0) 4 6 9 12 10 14 20 (4,1) (6,1) (9,1) (12,2) (10,2) (14,2) 20 (20,2)

Köszönöm a figyelmet!