felületi önszerveződés

Slides:



Advertisements
Hasonló előadás
Szén nanocsövek STM leképezésének elméleti vizsgálata
Advertisements

E. Szilágyi1, E. Kótai1, D. Rata2, G. Vankó1
ötvözetek állapotábrája
LEO 1540 XB Nanomegmunkáló Rendszer
1 / 20 Pannon Egyetem. 2 / 20 Pannon Egyetem Bevezetés Ionhelyettesítések és adalék anyagok befolyásolhatják a szupravezető anyag: –fázisösszetételét,
Nano-szerkezetű aranykatalizátorok. Hogyan tovább
Rétegmegmunkálás marással
FÉLVEZETŐ-FIZIKAI ÖSSZEFOGLALÓ
Szilárdságnövelés lehetőségei
Szilárdságnövelés lehetőségei
A nyersvasgyártás betétanyagai:
A KRISTÁLYSZERKEZET Szerkezeti anyagok: -kristályos szerkezetek, -üvegek, műanyagok, elasztomerek. Mi készteti az atomokat a kristályos szerkezet.
A H N J B D F C E G S P Q M O C% T K S’ E’ C’ K’ F’ D’ L P’ δ
Nem egyensúlyi rendszerek
Pozitron annihilációs spektroszkópia
Dr. Mizsei János előadásai alapján készítette Balotai Péter
Felülettudomány a heterogén katalízisben és a csillagászatban Az ipari eljárások igen jelentős része (80 %) alapul valamilyen heterogén katalitikus reakción.
Felülettudomány és nanotechnológia,
Vékonyfilm nm körüli vastagság ultravékonyfilm - 1 nm körüli vastagság CVD (chemical vapour deposition) kémiai gőz leválasztás LPD (laser photo-deposition)
Az anyagok szerkezete.
A fémek és ötvözetek kristályosodása, átalakulása
Készítette: Kálna Gabriella
FÉMTAN, ANYAGVIZSGÁLAT 2011_10_18
A levegőburok anyaga, szerkezete
A HIDROGÉN.
ÁTMENETIIFÉMEK (a d-mező elemei)
Ólommentes forrasztás
VEGYÉSZETI-ÉLELMISZERIPARI KÖZÉPISKOLA CSÓKA
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
STM nanolitográfia Készítette: VARGA Márton,
VÉKONYRÉTEG LEVÁLASZTÁSA FIZIKAI MÓDSZEREKKEL
Készítette: Dénes Karin (Ipolyság) és Patyi Gábor (Szabadka)
Szén-monoxid kölcsönhatása ionbombázással módosított Au(111) felülettel Pászti Zoltán, Hakkel Orsolya, Keszthelyi Tamás, Berkó András, Guczi László MTA.
1 Mikrofluidika Atomi rétegleválasztás (ALD) Készítette: Szemenyei F. Orsolya Témavezető: Baji Zsófia
Ötvözetek ötvözetek.
Hőkezelés órai munkát segítő HŐKEZELÉSEK.
METALLOGRÁFIA (fémfizika) A fémek szerkezete.
A moláris kémiai koncentráció
Anionadszorpció vizsgálata poli- és egykristály platinán kombinált elektrokémiai és radioizotópos nyomjelzéses módszerrel Előadó: Buják Renáta Témavezető:
STRONCIUM-ION MEGKÖTŐDÉSÉNEK KINETIKÁJA TERMÉSZETES AGYAGMINTÁKON
AP-CITROX kémiai dekontaminációs technológia nem-regeneratív változatával, az üzemi értéket meghaladó dekontamináló oldat áramlási sebességgel (1,69 m/s)
Transzportfolyamatok felszín alatti vizekben Simonffy Zoltán Vízi Közmű és Környezetmérnöki Tanszék Transzportfolyamatok felszín alatti vizekben Simonffy.
TERMÉSZETVÉDELMI MÉRNÖKI BSC
SiC szemcsék TEM vizsgálata Si hordozón Készítette: Bucz Gábor, Földes Ferenc Gimnázium Tanára: dr. Zsúdel László, Földes Ferenc.
Móra Ferenc Gimnázium (Kiskunfélegyháza)
ZnO réteg adalékolása napelemkontaktus céljára
Rendezett ZnO nanorudak előállítása és vizsgálata Rendezett ZnO nanorudak előállítása és vizsgálata Készítette: Horváth Balázs Batthyány Lajos Gimnázium,
Forrasztás.
Nanorészecskék fizikája, kvantumkémiai effektusok
Egykristályfelületek szerkezete és rekonstrukciói
Felülettudomány a mikroelektronikai eszközök gyártásában, a mikroelektronikától a nanoelektronikáig A tranzisztor ill. VLSI-IC gyártásban a felületttudomány.
Csapágyak-1 Csapágyakról általában Siklócsapágyak.
Spindinamika felületi klaszterekben Balogh L., Udvardi L., Szunyogh L. BME Elméleti Fizika Tanszék, Budapest Lazarovits B. MTA Szilárdtestfizikai és Optikai.
Kutatóegyetemi stratégia - NNA FELÜLETI NANOSTRUKTÚRÁK Dr. Harsányi Gábor Tanszékvezető egyetemi tanár Budapest november 17. Nanofizika, nanotechnológia.
Aktív nanoszerkezetű anyagok
Dr. Nagy Erzsébet, Gyenes Anett, Vargáné Molnár Alíz,
Amorf fényérzékeny rétegstruktúrák fotonikai alkalmazásokra
x1 xi 10.Szemnagyság: A szemnagyság megadásának nehézségei
Kémiai reakciók Kémiai reakció feltételei: Aktivált komplexum:
Készítette: Baricz Anita - Áprily Lajos Főgimnázium, Brassó Gréczi László – Andrássy Gyula Szakközépiskola, Miskolc Csoportvezetők:dr. Balázsi Katalin.
A FONTOSABB MÓDSZEREK:
Egykristályok előállítása
Nagyfeloldású Mikroszkópia Dr. Szabó István 12. Raman spektroszkópia TÁMOP C-12/1/KONV projekt „Ágazati felkészítés a hazai ELI projekttel.
#07D – Nanorészecskék és filmjeik MFA Nyári Iskola Beszámoló #07D – Nanorészecskék és filmjeik Pusztai Árpád Mentorok: Pothorszky Szilárd Zámbó Dániel.
Diffúzió Diffúzió - traszportfolyamat
Szervetlen vegyületek
Nem egyensúlyi rendszerek
Nem egyensúlyi rendszerek
OLDATOK.
Előadás másolata:

felületi önszerveződés Kétdimenziós önszerveződő felületkémiai rendszerek jelentősége a nanotechnológiában nanoklaszter-depozíció egyenkénti klaszter- generálás felületi önszerveződés Nano-strukturált vékonyrétegek létrehozásának alapvető módszerei

Kétdimenziós önszerveződő felületkémiai rendszerek főbb jellegzetességei 1. kvázi-periodikus nanoszerkezetek kilakításának egyik leggyorsabb módja; 2. a klasszikus kristályosítás egyik alesetének is tekinthető, de kiindulásként a felületi fázis átalakulásokra ill. az ún. felületi rekonstrukciókra is gondolhatunk; 3. a folyamat leírásában mind a termodinamikai (stabilitás, felületi szabadenergia minimalizálása), mind a kinetikai (felületi diffúzió) paraméterek fontos szerepet játszanak; 4. a legkülönbözőbb anyagi kombinációkra alkalmazható; 5. a folyamat matematikai modellezésében mind a kvantummechanika, mind a robosztus Monte Carlo szimulációk alkalmazása szükséges;

Néhány alapvető mechanizmus felületek és felületi vékonyrétegek nanométer léptékben periodikus, alapvetően kétdimenziós szerkezeteinek kialakulásában 1. egykristályok lapjainak orientálásával (vicinális felületek) kialakított lépcsős ill. periodikusan rekonstruált szerkezetek alkalmazása; 2. heteroepitaxiális szerkezeteknek a rácsállandók különbözőségéből adódó felületi relaxációja révén kialakuló periodikus anyagi rendszerek; 3. vékonyrétegek növesztési feltételeinek (deponálási sebesség és szubsztrát hőmérséklet) alkalmas megválasztásável kialakított 2D és 3D nanoklaszterek létrehozása (felületi nukleáció); 4. alkalmas nanostrukturált templáton (alapnyomaton) további mövesztéssel kialakított felületi nanoszerkezetek (funkcionalizált felületek);

[001] A TiO2 (110) felület néhány rekonstrukciója TiO2(110) / (1x1) / (1x2) / (1xn) [001] felvételi paraméterek: U= +1.5 V, I = 0.2 nA 200 nm x 200 nm

jól rendezett (1x2) felület 1D hibahelyekkel dekorált (1x1) felület TiO2(110) / (1x1) / (1x2) / (1xn) jól rendezett (1x2) felület 1D hibahelyekkel dekorált (1x1) felület (50 nm x 50 nm) különböző rekonstrukciók együttes jelenléte ! kereszt-sorokkal dekorált (1x2) felület (20 nm x 20 nm) (10 nm x 10 nm) lépcsőktől induló (1xn) szerkezet (20 nm x 20 nm) (10 nm x 10 nm)

Hogyan rendeződik az oxid felület, ha megzavarjuk a felületi szöchiometriát ionbombázással ? ( Lágy Ar+ bombázás ( 500 eV, 3 x 1013 ion cm2 s-1, 6 perc) és az azt követő hőkezelés hatása a TiO2(110)-(1×2) felület morfológiájára) 500 K VxOy / Rh(111) d = 1.5 nm 700 K a nanopöttyök (Ti2O 3)4-6 900 K 50 nm x 50 nm

Fémfelületek indukált rekonstrukciója, néhány nanométeres periodusok önszerveződéssel történő kialakulása W(111) felületre felvitt 1.2 monoréteg Pd ultravékonyfilm és hőkezelés (1075 K, UHV) 100 nm x 100 nm Három oldalú, kb 10-15 nm átmérőjű, 1-1.5 nm magas, bcc(211) lapokkal határolt piramisok alakulnak ki.

Ag-indukált periodikus átrendeződés (faceting) vicinális (nagy Miller-index) Cu(111) felületeken (1 monorétegnél kisebb Ag ultravékonyréteg) A felületi átrendeződés hajtóereje az, hogy a Cu(111) laphoz jól illeszkedő Ag(111) lap stabilizálja azt. A peiodicitás 3-30 nm tarto-mányban változtatható a boritottság függvé-nyében. Már 400 K körüli hőmérsékleteken stabil átrendeződés alakul ki. STM LEED

Adszorpció során kialakuló felületi periodikus nanoszerkezetek : N/ Cu(100) rendszer Az így kialakított felületi nanoszerkezet templátként szolgálhat további depozíciós műveletekhez. Például Au párologtatással az arany részecskék a tiszta réz felülethez kötődve igyanilyen periodusú rendszert hoznak létre. Képméret:30 nm x 30 nm Az STM képek mérete: 100 nm x 100 nm. A Cu(100) felületet atomos (gerjesztett) nitrogénnel exponáljuk. Négyzet alakú nanoszerkezetek fejlődnek ki, amely a nitrogénnel borított területekhez köhtetők, miközben a felület többi része lényegében tiszta Cu(100). A részecskék mérete alapvetően független a borítottságtól, sürüségük viszont nő a borítottsággal. Az STM felvételeken a nitrogén borítottság: (b) 0.22, (c) 0.28, (d) 0.36 monoréteg.

Antimon (Sb) részecskék kialakítása Sb4 adszorpciójával ún Antimon (Sb) részecskék kialakítása Sb4 adszorpciójával ún. pirolitikus grafit (HOPG) felületeken. A párologtatási sebességtől és a szubsztrát hőmérséklettől függően igen változatos nanoszerkezetek alakíthatók ki. Ezáltal lehet szabályozni mind a részecskék morfológiáját, mind az átlagos távolságukat. A kialakuló formák értelmezésében a felületi diffúziós folyamatoknak a felület heterogenitásából adódó különbségeit kell figyelemnbe venni.

Az ólom és a réz nem ad tömbi ötvözetet, mivel az atom sugarak, így a rácsállandók legalább 37%-ban különböznek. Ennek ellenére felületi ötvözet könnyen kialakulhat, ami viszont különleges periodikus rekonstrukciókat eredményez. Cu(111) Felületen a Pb borítottság növelése Cu(110) felületen 0.8 ML Pb borítottság Mivel a Cu(110) felület anizotróp, ezért a kialakult nanoszerkezet is anizótrópiát mutat

Ferrománeses nano-oszlopok kialakítása Képméret:300 nm x 300 nm Ferrománeses nano-oszlopok kialakítása (Au felületen Co - Au réteg növesztése) Az Au(111) felület egy jellegzetes, ún. halszálkás nanoszerkezetet (rekonstrukciót) mutat, amelynek töréspontjaiban a Co nagyobb valószínűséggel kötödik, tehát itt képez gócokat. Munkafázisok Au (111) felületre 0.2 monoréteg Co párologtatása 300 K-en. (gócképződés) Au párologtatása 450 K-en a Co klaszterek közötti tér feltöltésére. (feltöltés) További Co és megfelelő Au párologtastás a Co nano-oszlopok növesztésére. (oszlop-növesztés)

100 nm 200 nm jól elkülönült nano-részecskék kialakítása Két különböző módon növesztett Pt nanorészecskék TiO2 (110)-(1xn) felületen „konvencionális ” és „magképzés + növesztés” módszer 0.01 ML Pt 300 K + hőkezelés 1100 K-en 0.25 ML Pt 0.56 ML Pt 1.28 ML Pt 300 K tiszta TiO2 1.5 ML Pt 1000 K-en hőkezelt 1200 K-en jól elkülönült nano-részecskék kialakítása szűk méreteloszlásban 100 nm 200 nm

Kémiai reakció (CO + CO = CO2(g) + Cad ) eredményeként kialakuló C- nanoklaszterek Rh / TiO2 (110) felületen (részecske méret és morfológia hatása reaktivitásra) 10 mbar CO 300 K 400 K 500 K képméret: 200 nm x 200 nm Egy ígéretes lehetőség : nagyon kismérető szén nanoklasztrerekkel fedni a felületet (nanostrukturált szén hordozó)