Transzportfolyamatok II 2. előadás

Slides:



Advertisements
Hasonló előadás
Környezetgazdálkodás 1.
Advertisements

Környezeti és Műszaki Áramlástan II. (Transzportfolyamatok II.)
Érzékenységvizsgálat
TRANSZPORTFOLYAMATOK
TRANSZPORT FOLYAMATOK
Szennyezőanyagok légköri terjedése Gauss típusú füstfáklya-modell
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek.
Egymáson gördülő kemény golyók
Veszteséges áramlás (Navier-Stokes egyenlet)
ANYAGÁTBOCSÁTÁSI MŰVELETEK (Bevezető)
HŐÁRAMLÁS (Konvekció)
Kutatói pályára felkészítő akadémiai ismeretek modul Környezetgazdálkodás Modellezés, mint módszer bemutatása KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖK MSC.
Folyadékok mozgásjelenségei általában
Ülepítés A folyadéktól eltérő sűrűségű szilárd, vagy folyadékcseppek a gravitáció hatására leülepednek, vagy a felszínre úsznak. Az ülepedési sebesség:
Levegőtisztaság-védelem 6. előadás
Levegőtisztaság-védelem 7. előadás
Közműellátás gyakorlathoz elméleti összefoglaló
Gyengén nemlokális nemegyensúlyi termodinamika, … Ván Péter BME, Kémiai Fizika Tanszék –Bevezetés –Elvek: II. főtétel és mozgásegyenletek –Példák: Hővezetés.
Ülepítés gravitációs erőtérben Fényszórás (sztatikus és dinamikus)
Növekedés és termékképződés idealizált reaktorokban
EJF Építőmérnöki Szak (BSC)
EJF VICSA szakmérnöki Vízellátás
EJF Építőmérnöki Szak (BSC)
Vízminőségi modellezés. OXIGÉN HÁZTARTÁS.
Hőigények aránya Csőben áramló közeg nyomásveszteségének számítása
Összefoglalás a 2. zárthelyihez Hőszállítás Épületgépészet B.Sc. 5. félév; Épületenergetika B.Sc. 5. (6.) félév november 16.
Csőben áramló közeg nyomásveszteségének számítása
Hőtan.
Vízi Közmű és Környezetmérnöki Tanszék
TRANSZPORTFOLYAMATOK TRANSZPORTFOLYAMATOK (ELKEVEREDÉS, SZENNYEZŐANYAGOK TERJEDÉSE) BME Vízi Közmű és Környezetmérnöki Tanszék ftp://vkkt.bme.hu.
TÓ FOLYÓ VÍZMINŐSÉGSZABÁLYOZÁSI PÉLDA  C H3 Célállapot (befogadó határérték) Oldott oxigén koncentráció ChChChCh  C H2  C H2 - a 13 E 1 (1-X 1 ) - a.
Érzékenységvizsgálat
Transzportfolyamatok felszín alatti vizekben Simonffy Zoltán Vízi Közmű és Környezetmérnöki Tanszék Transzportfolyamatok felszín alatti vizekben Simonffy.
TRANSZPORTFOLYAMATAI
Transzportfolyamatok II 1. előadás
TRANSZPORTFOLYAMATOK II
TRANSZPORTFOLYAMATOK (ELKEVEREDÉS, SZENNYEZŐANYAGOK TERJEDÉSE)
-Érzékenység a paraméterek hibáira, -érzékenység a bemenő adatok hibáira Nézzünk egy egyszerű példát...
11.ea.
9.ea.
Transzportfolyamatok II. 3. előadás
A légkör fizikai tulajdonságai alapján rétegekre osztható
ÁLTALÁNOS TRANSZPORTEGYENLET
Felszíni víz monitoring
Levegőtisztaság-védelem
VÍZÉPÍTÉSI ALAPISMERETEK
Áramlástan Áramlási formák Áramlás csővezetékben Áramlás testek körül
III. Kontaktusok tulajdonságai és számítógépes modellezés 4. előadás: Hertz-kontaktus; ütközés Budapest, szeptember 28.
KÖRNYEZETI MODELLEK MI A CÉLJA A MODELLEZÉSNEK? (MIBEN SEGÍTENEK A KÖRNYEZETI MODELLEK? BONYOLULT RENDSZEREK MEGISMERÉSE (Segítenek a kölcsönhatások.
A Van der Waals-gáz molekuláris dinamikai modellezése Készítette: Kómár Péter Témavezető: Dr. Tichy Géza TDK konferencia
Transzportfolyamatok felszín alatti vizekben S.Tombor Katalin Vízi Közmű és Környezetmérnöki Tanszék.
TRANSZPORTFOLYAMATOK (ELKEVEREDÉS, SZENNYEZŐANYAGOK TERJEDÉSE)
1 Vízminőség-védelem 7-9. ea. Konzervatív anyagok terjedése folyókban Dittrich Ernő egyetemi adjunktus PTE-PMMK Környezetmérnöki Tanszék Pécs, Boszorkány.
TRANSZPORTFOLYAMATOK TRANSZPORTFOLYAMATOK (ELKEVEREDÉS, SZENNYEZŐANYAGOK TERJEDÉSE) BME Vízi Közmű és Környezetmérnöki Tanszék ftp://vkkt.bme.hu.
Sándor Balázs BME, Vízépítési és Vízgazdálkodási Tanszék
Vízminőség-védelem 7-9. ea.
TRANSZPORTFOLYAMATOK II
Környezetgazdálkodás 1.
Porozitáskövető szelvények Neutron módszerek (O.H. És C.H.)
Áramlás szabad felszínű csatornában Hő- és Áramlástan I. Dr. Író Béla SZE-MTK Mechatronika és Gépszerkezettan Tanszék.
Növekedés és termékképződés idealizált reaktorokban
VÍZMINŐSÉGSZABÁLYOZÁSI PÉLDA
Áramlástani alapok évfolyam
TRANSZPORTFOLYAMATOK (ELKEVEREDÉS, SZENNYEZŐANYAGOK TERJEDÉSE)
Áramlástan mérés beszámoló előadás
BMEGEENATMH kiegészítés
A légkör fizikai tulajdonságai alapján rétegekre osztható
Áramlás szilárd szemcsés rétegen
Hőtan.
Előadás másolata:

Transzportfolyamatok II 2. előadás Karches Tamás BME- Vízi Közmű és Környezetmérnöki Tanszék

ÁLTALÁNOS TRANSZPORTEGYENLET Szennyezőanyag sorsa a felszíni vizekben Szűk értelmezés: csak a fizikai folyamatok (víz szerepe) Tág értelmezés: kémiai, biokémiai, fiziko-kémiai folyamatok is szerepelnek Elsődleges célok: Vízminőségi változások számítása az emisszió hatására (növekedés, csökkenés, határérték) Keveredés térbeli léptéke (térbeli különbözőségek, a partok elérése, teljes elkeveredés) Szennyvízbevezetések tervezése (sodorvonal, part, partközel vagy diffúzor-sor) Havária - események modellezése (szennyezőanyag-hullámok vagy időben változó emissziók hatásainak számítása, early warning - előrejelzés)

ISMERETLENEK ÉS EGYENLETEK (1) Sebesség (3 komponens – vx, vy, vz) - mozgásegyenlet Nyomás vagy vízmélység (p, h) - kontinuitás Koncentráció (c) – transzportegyenlet (konzervatív anyag?) Sűrüség: ρ(c) – empirikus kapcsolat Elvileg 6 szimultán egyenletet kell megoldani! Gyakorlat: ρ ≠ ρ(c) 1. + 2. megoldása: áramlástan

ISMERETLENEK ÉS EGYENLETEK (2) 3. megoldása: transzport „Near field” és „far field” szétválasztása (utóbbit a sebességkülönbségek eltűnése jellemzi) A sebességtér és a nyomás számításból, becslésből vagy mérésből nyerhető A turbulens diffúzió tényezője ismeretlen: empíria, mérések, „inverz” feladat Geometria és a perem származtatása fontos Perem- és kezdeti feltételek

ÁLTALÁNOS TRANSZPORTEGYENLET Alkalmazási feltételek: A szennyezőanyag bevezetés az alapáramláshoz viszonyítva nem idéz elő számottevő sebességkülönbséget, A szennyezőanyag és a befogadó sűrűségkülönbsége kicsi, Konzervatív anyag DIFFÚZIÓ v KONVEKCIÓ

Fick törvények I. m2/s Mikro- vagy makro viselkedés? Diffundálódó anyag megmaradása II. Kérdés: Fick I. és II. törvénye hogy néz ki 3 D-ben? http://www.matter.org.uk/matscicdrom/manual/images/image70.gif

ANYAGMÉRLEG dz BE: konv +diff KI: konv + diff dy dx x irány BE KI konvekció vx c dy dz diffúzió megváltozás Megváltozás:

Anyagmérleg-egyenlet (konvekció-diffúzió 1D) Konvekció: az áramlási sebességtől függően az eltérő koncentráció értékkel jellemzett részecskék egymáshoz viszonyítva különböző mértékben mozdulnak el. Diffúzió: a szomszédos vízrészecskék egymással való (lassú) elkeveredése, koncentráció kiegyenlítődéshez vezet.

Transzportegyenlet

Turbulencia - Nagy Re számoknál jelentkezik - Keveredést okoz - Lehatárolható - Tranziens Disszipatív Kontinuum jelenség -3D jelenség -történelme van http://www.elrincondejavier.net/html/images/articulos/turbulencia.jpg

Kolmogorov spektrum ENERGIAKASZKÁD Turbulens áramlások leírásához két további egyenlet szükséges: a turbulens kinetikus energiára (k) és a turbulens energia disszipációjára (e) http://sv.wikipedia.org/wiki/Turbulens

TRANSZPORT KONVEKCIÓ : vc [ kg/m2s ] HOGYAN ALAKUL TURBULENS ÁRAMLÁSBAN? ?

TURBULENS DIFFÚZIÓ Dtx, Dty, Dtz >> D v molekuláris diffúzió turbulens diffúzió (“felhő”)

3D transzport egyenlet turbulens áramlásban: Dx = D + Dtx, Dy = D + Dty, Dz = D + Dtz Sebességek kiemelése - kontinuitás Konvekció: átlagsebesség (T) Turbulens diffúzió - Sebesség véletlenszerű ingadozásai (pulzációk) - Matematikailag diffúziós folyamatként kezelendő - Hely- és irányfüggő (nem homogén és anizotróp) - Turbulenciakutatás és empirikus összefüggések

Dx* = D + Dtx + Ddx (levezetése?) DISZPERZIÓ A térbeli egynlőtlenségekből adódó konvektív transzport (az átlaghoz képest előresiető, visszamaradó részecskék) v Dx* = D + Dtx + Ddx (levezetése?) - Csak 2D és 1D egyenletekben létezik (argumentum: pl. (hvxc)) - Diszperziós tényező: a sebességtér függvénye - Víz és légkör (kanyarok, esés, stabilitás, inverzió stb.) - Minél nagyobb az átlagolandó felület, annál nagyobb az értéke - 2D eset: Dx*, Dy* >> Dx - 1D eset: Dx** >> Dx* - Lamináris áramlásban is létezik!

2D transzport egyenlet turbulens áramlásban (C H menti átlag): - Dx*, Dy* 2D egyenlet turbulens diszperziós tényezői (Taylor) - Mélység mentén vett átlag (H) 1D transzport egyenlet turbulens áramlásban ( A menti átlag): - Dx** 1D egyenlet turbulens diszperziós tényezője - Keresztszelvény területre vonatkoztatott átlag (A)

NAGYSÁGRENDEK Hosszir. diszperzió (1D) Hosszir. diszperzió (2D) Keresztir. diszperzió (2D) Vízsz. ir. turbulens diff. Tavak Függ. ir. turbulens diff. Mély réteg Felszíni réteg Molek. diff. pórusvíz 10-8 10-6 10-4 10-2 1 102 104 106 108 cm2/s

Diszperziós tényezők becslése (empíriák) Keresztirányú diszperziós tényező (Fischer): Dy* = dy u*R (m2/s) dy – dimenzió nélküli konstans, egyenes, szabályos csatorna dy  0.15, enyhén kanyargós meder dy  0.2 – 0.6 kanyargós, tagolt meder dy > 0.6 (1-2) u* - fenékcsúsztató sebesség, u* = (gRI)0.5 R – hidraulikai sugár (terület/kerület); I esés (-) Hosszirányú diszperziós tényező: dx  6

A turbulens diffúziós tényező a konvektív transzportból következik, de alakja miatt könnyen összetéveszthető a diffúzió folyamatával!!!