OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.

Slides:



Advertisements
Hasonló előadás
Nitrogén vizes környezetben
Advertisements

Horváth Gábor Környezetmérnöki Kft
A szennyvíztisztítás biokinetikai problémái a gyakorlatban.
Vízminőség-védelem III.
VÍZMINŐSÉGSZABÁLYOZÁS ESZKÖZEI
Dr. Clement Adrienne Felszíni vizek minősége és terhelhetősége: a vízminőség-szabályozás új feltételrendszere a VKI tükrében BME VÍZI KÖZMŰ ÉS KÖRNYEZETMÉRNÖKI.
Akvapónia üzemeltetés Aquaponics operation and maintenance
Regionális szennyvíz rendszerek befogadó vízminőségére gyakorolt hatásai: Szennyvíz agglomerációkra vonatkozó EU követelmények és hazai szabályozás.
TERMÉSZETES SZENNYVÍZTISZTÍTÁSI RENDSZEREK
MŰSZAKI ÉS SZABÁLYOZÁSI ESZKÖZÖK
HASZNÁLT HÉVIZEK FELSZÍNI BEFOGADÓBA TÖRTÉNŐ BEVEZETHETŐSÉGE,
Környezettechnika Modellezés Biowin-nel Koncsos Tamás BME VKKT.
Felszíni vizek minősége
Innovatív szennyvíztechnológiai módszerek a felszíni vizekbe kerülő prioritás szennyezőanyag terheléseinek csökkentésére Dr. Fleit Ernő, egyetemi docens.
Vízminőségi jellemzők
FOLYÓVIZEK OXIGÉN HÁZTARTÁSA
TRANSZPORT FOLYAMATOK
FOLYÓVIZEK OXIGÉN HÁZTARTÁSA
Kémiai szennyvíztisztítás
KÖRNYEZETVÉDELEM VÍZVÉDELEM.
Vízminőségi modellezés. OXIGÉN HÁZTARTÁS.
Vízminőség-szabályozás műszaki eszközei
VÍZMINŐSÉGSZABÁLYOZÁS ESZKÖZEI. SZABÁLYOZÁS MŰSZAKI: EMISSZIÓ CSÖKKENTÉSE VÍZMINŐSÉG JAVÍTÁSA JOGI HATÓSÁGI ESZKÖZÖK GAZDASÁGI GAZDASÁGI ÖSZTÖNZŐK TÁMOGATÁSOK.
A szennyvíztisztítás harmadik fokozata
Szennyvíztisztítás Melicz Zoltán Egyetemi adjunktus
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
TERMÉSZETES SZENNYVÍZTISZTÍTÁSI RENDSZEREK
VÍZMINŐSÉGSZABÁLYOZÁS ESZKÖZEI
SZENNYVÍZTISZTÍTÁS.
Tavak, tározók rehabilitációja
KÉMIAI KEZELÉS ALKALMAZÁSA A SZENNYVÍZTISZTÍTÁSBAN
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
TÓ FOLYÓ VÍZMINŐSÉGSZABÁLYOZÁSI PÉLDA  C H3 Célállapot (befogadó határérték) Oldott oxigén koncentráció ChChChCh  C H2  C H2 - a 13 E 1 (1-X 1 ) - a.
VÍZFOLYÁSOK OXIGÉN HÁZTARTÁSA. SZENNYVÍZ HATÁSA (EMISSZIÓ – IMMISSZIÓ) BOI 5 emisszió nő, BOI 5 koncentráció nő, oldott O 2 koncentráció csökken (és fordítva)
Példa: a Streeter-Phelps vízminőségi modell kalibrálása
VÍZMINŐSÉGSZABÁLYOZÁS ESZKÖZEI
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
-Érzékenység a paraméterek hibáira, -érzékenység a bemenő adatok hibáira Nézzünk egy egyszerű példát...
11.ea.
Transzportfolyamatok II. 3. előadás
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
Visszatérve a 3 szennyező példához: Három szennyezőforrás esetén a gazdaságilag legkedvezőbb megoldás kiépítését szeretnénk hatósági eszközökkel elősegíteni.
Környezetgazdaságtan Fonyó György Vízi Közmű és Környezetmérnöki Tanszék U épület,
Környezeti rendszerek modellezése
FOLYÓVIZEK OXIGÉN HÁZTARTÁSA
OECD GUIDELINE FOR THE TESTING OF CHEMICALS Soil Microorganisms: Carbon Transformation Test OECD ÚTMUTATÓ VEGYI ANYAGOK TESZTELÉSÉRE Talaj Mikroorganizmusok:
Vízminőség védelem A víz az ember számára: táplálkozás, higiénia, egészségügy, közlekedés, termelés A vízben található idegen anyagok - oldott gázok -
A Rétköz környezetvédelme
Energia-visszaforgatás élelmiszeripari szennyvizekből
Vízszennyezés.
Zsuga Katalin – Szabó Attila: A Tisza hazai vízgyűjtőterületének ökológiai állapota, környezetvédelmi problémái Győri Katalin Dorottya geográfus III. évf.,
1 Dr. Dulovics Dezső, PhD. BME Vízi Közmű és Környezetmérnöki Tanszék   a LE-nél kisebb települések víziközmű helyzete, helyi szennyvízelhelyezés.
Felszíni vizek minősége
KÖRNYEZETI MODELLEK MI A CÉLJA A MODELLEZÉSNEK? (MIBEN SEGÍTENEK A KÖRNYEZETI MODELLEK? BONYOLULT RENDSZEREK MEGISMERÉSE (Segítenek a kölcsönhatások.
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
Szennyvíz-tisztítás.
KISVÍZFOLYÁSOK ÖKOLÓGIAI MEDERRENDEZÉSE
VÍZMINŐSÉGI PROBLÉMÁK
Felszíni vizek minősége és terhelhetősége: a vízminőség-szabályozás új feltételrendszere a VKI tükrében Dr. Clement Adrienne BME VÍZI KÖZMŰ ÉS KÖRNYEZETMÉRNÖKI.
Központi Szennyvíztisztító Telep
VÍZFOLYÁSOK OXIGÉN- HÁZTARTÁSA. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) LÉGKÖRI OXIGÉNBEVITEL O2O2 KÉTVÁLTOZÓS.
Élelmiszeripari szennyvizek tisztítása
A biológiai és a kémiai szennyvíztisztítás szimbiózisa
BAKTERIÁLIS SZENNYEZÉS
DUNA RÉSZVÍZGYŰJTŐ-GAZDÁLKODÁSI TERV FELÜLVIZSGÁLATA AZ ORSZÁGOS VÍZÜGYI FŐIGAZGATÓSÁG ÉS AZ ÉSZAK- DUNÁNTÚLI VÍZÜGYI IGAZGATÓSÁG SZAKMAI FÓRUMA FELSZÍNI.
A TISZA RÉSZVÍZGYŰJTŐ - GAZDÁLKODÁSI TERV FELÜLVIZSGÁLATA AZ ORSZÁGOS VÍZÜGYI FŐIGAZGATÓSÁG ÉS A KÖZÉP – TISZA - VIDÉKI VÍZÜGYI IGAZGATÓSÁG KÖZÖS SZAKMAI.
A szennyvíztisztítás harmadik fokozata. A szennyvíztisztítás különböző fokozatai 1.I. vagy Mechanikai fokozat –Rács –Homokfogó –Előülepítő 2.II. vagy.
VÍZMINŐSÉG,VÍZSZENNYEZÉSEK. VÍZMOLEKULA - H 2 O 1.4 milliárd km 3, a földkéreg felszínének 71 %-át borítja víz KÜLÖNLEGES KRISTÁLYSZERKEZET  SŰRŰSÉG.
Ökológiai szempontok a szennyvíztisztításban
VÍZMINŐSÉGSZABÁLYOZÁSI PÉLDA
Előadás másolata:

OXIGÉN HÁZTARTÁS

EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2

SZENNYVÍZ HATÁSA (EMISSZIÓ – IMMISSZIÓ)  BOI 5 emisszió nő, BOI 5 koncentráció nő, oldott O 2 koncentráció csökken (és fordítva)  O 2 fontos vízminőségi indikátor VÍZMINŐSÉGI OSZTÁLYOZÁS (O 2 esetére)  nyers szennyvíz: O mg/l  telítési koncentráció “tiszta” vízben (Henry törvény): ~ 10 mg/l (20 °C )  halak megóvása, szaporodása:  6 mg/l  eltérő érzékenység: ivadék kora, halfajok (pl. pisztráng 6-7 mg/l, ponty 4 mg/l)  vízhasználatok  integrált osztályozás

MÉRLEG SZERVESANYAG (C, N) ÜLEDÉK LÉGZÉS LÉGKÖRI DIFFÚZIÓ FOTOSZINTÉZIS MELLÉKFOLYÓK Oldott oxigén egyenlet:

nap O 2 fogyasztás Szerves szén (C) lebontása BOI  5 BOI 5 L Oxigén fogyasztás (BOI: 2.7 g O2 = 1 g szerves C) L – maradék oxigén igény (BOI) - többlépcsős kinetika L0L0 L 0 = BOI  1. rendű kinetika (exponen- ciális) L (t) = L 0 exp(-k 1 t) BOI 5 = BOI  - BOI  exp(-k 1 5)= BOI  (1-exp(-k 1 5)) BOI = L 0 - L 0 exp(-k 1 t)=L 0 (1-exp(-k 1 t))

Lebomlási tényező (k 1 ) Lebontási folyamatok sebességét jelzi, kinetikai állandó Dimenzió: 1/nap Hőmérsékletfüggő  = 1.04 T T limit 20C 1 Érvényesség ! Függ a szennyvíztisztítás mértékétől Technológiak 1 (T=20C)f Nincs tisztítás Mechanika Mechanika+kémiai kicsapatás Biológiai tiszt

Oxigén bevitel (légköri diffúzió) C < Cs C C s – telítési koncentráció Henry törvény: p = He C s p – parciális nyomás He – Henry szám f(T, P, sótartalom, stb.) T CsCs sótartalom TC s (mg/l)

Oxigén bevitel (légköri diffúzió, film elmélet) C V hh Molekuláris diff. tényező (m 2 /s) Oxigén átadási tényező (m/nap) Fajlagos oxigén beviteli tény.(1/nap) Megoldás: exponenciális (D = C S - C)

Oxigén beviteli tényező (k 2 ) Mi befolyásolja? - Áramlás jellemzői: turbulencia - Vízmélység, sebesség - Empirikus összefüggések - Érvényesség, dimenzió és kis H!!! EPA procedúrak 2  Mérés -Helyszíni nyomjelzős kísérletek illékony gáz injektálásával (etilén, propán, propilén, kripton)

CEE Fall, 2007 Atmospheric Reaeration Depth, (m) Depth, (ft) Method of Covar (1976) Uses formulae of: –O’Connor & Dobbins –Churchill –Owens-Gibbs Input stream velocity and depth of flow Select k r (d -1 ) at intersection of flow and depth coordinates

CEE Fall, 2007 Reaeration Coefficient Estimation from Stream Descriptions Water Body Descriptionk r (days 20 o C) Small ponds and backwaters Sluggish streams and large lakes Large streams of low velocity Large streams of normal velocity Swift streams Rapids and waterfalls> 1.15 Source: Peavy, Rowe and Tchobanoglous, 1985

CEE Fall, 2007 Simplified Schematic Representation of Model Assume PF and define control volume as a unit rectangle Control volume moves downstream at constant velocity Determine the initial oxygen content after mixing (L 0 ) Compute DO at any time by solving differential equation for BOD exertion and atmospheric reaeration

Folyóra Q, v L h, C h q, L szv, C szv Feltételek: permanens (Q(t), E(t)=konst, 1D (azonnali elkeveredés), prizmatikus meder Szerves C (BOI) egyenlet: Vagy:levonulási idő (utazunk a folyón) L 0 számítása (1D): azonnali elkeveredés!

Folyóra Oldott oxigén (inhomogén lineáris diff. egyenlet) : D = C s - C deficit Q, v L h, C h q, L szv, C szv

Folyóra Q, v L h, C h q, L szv, C szv L x, t* LhLh L0L0 C ChCh C0C0 Cs C min x krit, t* krit D0D0 D max

Components of the Oxygen Sag Curve

CEE Fall, 2007 Definitions for the DO Sag Curve

Kritikus hely meghatározása Minimum:  0  2  1.5 – 2 nap Hígulás: L 0, D 0  D max, C min. Szabályozás. Iteráció. Mérés! Több szennyező: szuperponálható

Több szennyvízbevezetés Q, v L h, C h q 1, L szv 1, C szv 1 x, t* L LhLh L0L0 C ChCh C0C0 Cs C min x krit, t* krit D0D0 D max L h2 q 2, L szv 2, C szv 2 C h2 D o2

Streeter-Phelps (1925) oxigén modell Továbbfejlesztések: 1.Nitrifikáció egyszerűsítve 2.Nitrifikáció részletesebben 3.Szervesanyag oldott és ülepedő frakciók különválasztása 4.Üledék oxigén igénye 5.Fotoszintézis, légzés 6.Speciális eset: anaerob szakasz számítása Szervesanyag lebomlás egyenlete (L: BOI ∞ ) Oldott oxigén egyenlete (C: O 2 )

Nitrifikáció egyszerűsítve 5 20 nap BOI BOI C BOI N Kjeldahl N (Szerves N, NH4-N) - L N --> mérés Két lépés: Nitrosomonas 2NH O 2  2NO H 2 O + 4H + Nitrobacter2NO O 2  2NO g O g O 2  : 4.57 g O 2 L N =BOI N = 4.57KN Feltételek: - Nitrifikáló (aerob autotróf) baktériumok, - Lúgos környezet (pH > 6), - Oxigén jelenléte, oldott oxigén > 1-2 mg/l, - Toxikus anyagok gátolják! Tisztított sz.víz? - Hőmérsékletfüggő - Legegyszerűbb leírás: L = BOI C + BOI N

Üledék oxigén igénye Okok: -szennyvíz ülepedő részecskéi iszapréteget képeznek -elhalt növények, falevelek felhalmozódása -alga ülepedés Magas szervesanyag tartalmú üledék (iszap): -felső részében aerob, alsó részében anaerob lebomlási folyamatok  oxigén elvonása a vízből -lebomlás  CO 2, CH 4, H 2 S képződés -gázképződés  felszálló buborékok, iszap flotációja -esztétikai problémák Közelítés: konstans (?) megoszló terhelés (S) „SOD” S (g O 2 / m 2,nap) ÜledékS (gO 2 /m 2,nap) Települési szennyvíz(iszap) bevezetés környezetében (4) Szennyvízbevezetés alatti szakaszon 1-2 (1.5) Homokos üledék0.2-1 (0.5) Árapályos folyamtorkolati iszap (0.07)

Fotoszintézis, légzés 6CO 2 + 6H 2 0  C 6 H 12 O 6 + 6O 2 Napfény, glükóz Fotoszintézis (P mgO 2 /m 3,nap) 6CO 2 + 6H 2 0  C 6 H 12 O 6 + 6O 2 Légzés (R mgO 2 /m 3,nap) Sötétben t (h) P, R 24 t (h) O2O2 24 Cs túltelítettség CC t1t1 t2t2 PaPa PmPm Napi átlagos O 2 termelés Pm mérésből: fotoperiódus R, P számításból: alga egyenlet (Klorofill-a * a = P) Oldott O 2 egyenletbe

Oxigén vonal (ill. összes oldott oxigén deficit) számítása Deficit kezdeti értéke Szerves C lebontás Nitrifikáció Üledék oxigén igénye Fotoszintézis Vízinövényzet légzése

Példa: Szennyvízbevezetés hatása a befogadó oldott oxigén koncentrációjára (1 D, permanens) Települési szennyvíz jellemzői:LE BOI 5 koncentráció: 600 mg/l Kjeldahl N: 120 * 4.57 = 548 mg/l q = * 0.1 = m 3 /nap = 0.14 m 3 /s Befogadó vízfolyás jellemzői:Háttér koncentrációk: L h = 5 mg/l, C h = 8 mg/l T = 25 C, v = 0.5 m/s, Q = 15 m 3 /s, Cs = 8.4 mg/l k 1 = /nap, k 2 = 0.7 1/nap Kezdeti értékek: L 0 = 16.6 mg/l, D 0 = 0.47 mg/l Kritikus hely: t krit = 1.9 nap, x krit = 82 km C min = 3.6 mg/l Hígulás szerepe

Szabályozás: oxigén háztartás javítása Emisszió csökkentése: Szennyvíztisztítás Települési (kommunális szennyvíz) – BOI, kN Ipari szennyvíz: élelmiszeripar (konzervgyár, vágóhíd, húsüzem, cukorgyár, szeszipar stb – BOI,KOI, kN), vegyipar (műtrágyagyártás – NH4), papírgyártás (KOI) Szennyvíz tisztítási technológia Rel. költségekTisztítási hatásfok (%)N formák (%) BerÜzemBOIÖNÖPNH 4 NO 3 Mechanika M + Kicsapatás Nagyterhelésű biológia Kisterhelésű biológia Nagyterhelésű Bio + P Kisterhelésű Bio + P NB +P +részleges N NB + P + teljes N

Nyers szennyvíz* mg/L Elfolyó tisztított szennyvíz mg/L KOI55050 BOI Tot-N5012 Tot-P81 ÖLA2005 Délpesti szennyvíztisztító telep - Budapest Technológia: Alap: nagyterhelésű biológiai tisztítás Biofilterek: nitrifikáció és denitrifikáció (methanol adagolással) Kémiai P eltávolítás (szimultán és utó kicsapatás) Iszap rothasztás + biogáz hasznosítás (kb. az energiaszükséglet 2/3-a)

Északpesti szennyvíztisztító telep - Budapest Technológia: Nagyterhelésű eleveniszapos (Szovjet technológia) Fejlesztés: (2004) Részleges nitrifikáció Kémiai előkezelés szeparált medencékben Iszap víztelenítés, (rothasztók építése folyamatban) Nyers szennyvíz mg/L Elfolyó tisztított szennyvíz mg/L KOIKOI58261 BOI Tot-N4731 Tot-P82 ÖLA22512

Oroszlány: Membrán (MBR) technológia (2004)

Oroszlány MBR tisztítási hatásfokok: Nyers szennyvíz Tisztított víz Határérték KOI mgO2/l BOI5 mg/l 4963,025 pH pH7,727,946,5-9 ÖN mg/l 124,56,030 ÖKN mg/l 122,51,3 NO3 mg/l 0,6 36 NH4 mg/l ,12 5 ÖP mg/l 9,31,82 ÖLA mg/l Összes oldószer extract mg/l ,75

GYÖKÉRMEZŐS TISZTÍTÁS - SZÜGY

ÉPÍTETT VÍZINÖVÉNYES SZENNYVÍZTISZTÍTÓ RENDSZEREK LEBEGŐHÍNÁROS RENDSZER

FAÜLTETVÉNYES SZENNYVÍZTISZTÍTÓ RENDSZEREK

TAVAS SZENNYVÍZTISZTÍTÓ RENDSZEREK A tavak az I., a II. vagy a III. tisztítási fokozat szerepét töltik be. Utótisztításként is alkalmazzák. Általában sorbakötött tó-egységek: Anaerob tó 3 – 5 m vízmélységgel Fakultatív tó 1,2 – 1,8 m vízmélységgel Utótisztító aerob tó 0,7 – 1,0 m vízmélységgel A fakultatív tóban lejátszódó átalakítási folyamatok

Vízminőségi hatások különböző hígulási viszonyok esetén az alkalmazott tisztítási technológia függvényében

HÍGULÁSI ARÁNY (2003) Dilution (Q/q)

HÍGULÁSI ARÁNY (2015)

Települési diffúz szennyezések csökkentése: Csatornázatlan települések - szikkasztott szennyvíz  Csatornázás, rákötés a meglévő rendszerre - illegális szennyvízbevezetések felszámolása  Házi szennyvíztisztítók (oldómedence + szikkasztás) – szakszerű egyedi szennyvízelhelyezés Belterületi állattartás szabályozása (trágyatárolás – szigetelés, fedés) Felszíni szennyeződések lemosódása  Köztisztasági tevékenység  Lefolyás szabályozás (vízvisszatartás – beszivárogtatás, lefolyás hullám késleltetése tározással)  Csatornázás: egyesített rendszer  elválasztott rendszer

Egyszerű oldómedence és hagyományos (szikkasztásra alkalmas helyi talajban kialakított) dréncsövezett szikkasztó rendszer Bővített oldómedence, kis mélységű, homokkal töltött árkos szikkasztó rendszer és adagoló szivattyú Bővített oldómedence, homokszűrő és dombként kiemelkedő rendszer, adagoló szivattyúkkal

Szennyezőanyag Esemény-átlagkoncentráció (EMC) középértékek Medián90%-os percentilis Összes lebegőanyag [mg/l]141–234424–671 BOI 5 [mg/l]10–1317–21 KOI [mg/l]73–92157–198 Összes foszfor [mg/l]0,37–0,470,78–0.99 Oldható foszfor [mg/l]0,13–0,170,23–0,30 TKN [mg/l]1,68–2,123,69–4,67 NO 2+3 -N [mg/l]0,76–0,961,96–2,47 Összes Cu [  g/l] 38–48104–132 Összes Pb [  g/l] 161–204391–495 Összes Zn [  g/l] 179–226559–707 Átlagos városi helyszín felszíni lefolyásának vízminőségi jellemzői a National Urban Runoff Project (NURP) felmérése alapján

Szennyezőanyag lemosás: „first flush”

Vízvisszatartás: porózus burkolat kivitelezése vízáteresztő és vízzáró altalaj esetén

Homokszűrős víznyelő Füvesített árok

Időszakos tározómedence sémája

Állandó tározómedence sémája

Egyéb pontszerű szennyezőforrások: Állattartó telepek (BOI, NH4-N)  Megfelelő trágyatárolás  Hígtrágyás állattartás  almos trágyázás,  Mezőgazadasági felhasználás (újrahasznosítás) Hulladéklerakók csugalékvizei  Megfelelő műszaki védelem  Rekultiváció (felhagyott) Halastavak vízleeresztése  Jó tógazdálkodási gyakorlat  Leeresztés korlátozása Termálvíz bevezetés  Visszasajtolás (csak hő hasznosítása esetén)  Tározás visszavezetés előtt

Eszközök az oxigén háztartás javításához Öntisztulás javítása, oxigén bevitel fokozása: Fenéklépcső, fenékküszöb,bukó stb. (hosszirányú átjárhatóság korlátozása miatt ökológiai szempontból nem jók), szűkület, surrantó Iszapkotrás, üledék eltávolítása (folyók, tavak) Természetközeli (ökológiai szemléletű) mederrendezés Kanyargós meder (meanderezés), parti zóna megléte Csobogók, kiöblösödések  változatosabb élőhelyek, gazdagabb élővilág  szabálytalanabb áramlás, oxigén bevitel növelése  hosszabb tartózkodási idő, öntisztulás  természetes ártér, hordalék visszatartás Tavak oxigén ellátottságának javítása Hipolimnion (alsó réteg) levegőztetése, cirkuláció (csak mély tavakban)

Belterületi szakasz: Egyenes, burkolt trapézmeder

Kisvízi meder kiszélesítése, lankás rézsű - meanderezés kialakul Belterületi természetes állapotú szakasz

Függőleges vonalvezetés, fenéklépcső Függőleges vonalvezetés, surrantó

Az oxigén beviteli tényező hatása a kritikus oxigén koncentrációra, különböző hígulási arányok mellett

Következtetések a befogadó terhelhetőségétől függően a szennyvíztisztítási technológia megválasztására Hígulás (befogadó/szennyvíz hozam aránya, Q/q) a vízminőségi hatás szempontjából (oxigén viszonyok) meghatározó.Hígulás (befogadó/szennyvíz hozam aránya, Q/q) a vízminőségi hatás szempontjából (oxigén viszonyok) meghatározó. A szennyvíztelepeken nitrifikáció előírása fontos,A szennyvíztelepeken nitrifikáció előírása fontos, Dombvidéki vízfolyáson Q/q<30,Dombvidéki vízfolyáson Q/q<30, Síkvidéki vízfolyásnál Q/q <100,Síkvidéki vízfolyásnál Q/q <100, Pangó (kis esésű) víznél Q/q <200 esetén.Pangó (kis esésű) víznél Q/q <200 esetén.

Kombinált partvédelem elhabolás ellen Árnyékolt meder

DOMBVIDÉKI KIS- ÉS KÖZEPES VÍZFOLYÁSOK REHABILITÁCIÓJA