OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.

Slides:



Advertisements
Hasonló előadás
Nitrogén vizes környezetben
Advertisements

Horváth Gábor Környezetmérnöki Kft
A szennyvíztisztítás biokinetikai problémái a gyakorlatban.
Vízminőség-védelem III.
A területi vízgazdálkodási tervek készítéséhez (vizeink minősítése érdekében) végzett laboratóriumi mérésekből levonható következtetések Krímer Tibor.
Gáz-folyadék fázisszétválasztás
Dr. Clement Adrienne Felszíni vizek minősége és terhelhetősége: a vízminőség-szabályozás új feltételrendszere a VKI tükrében BME VÍZI KÖZMŰ ÉS KÖRNYEZETMÉRNÖKI.
Érzékenységvizsgálat
Regionális szennyvíz rendszerek befogadó vízminőségére gyakorolt hatásai: Szennyvíz agglomerációkra vonatkozó EU követelmények és hazai szabályozás.
Felszíni és felszín alatti víz monitoring
Környezettechnika Modellezés Biowin-nel Koncsos Tamás BME VKKT.
Felszíni vizek minősége
Innovatív szennyvíztechnológiai módszerek a felszíni vizekbe kerülő prioritás szennyezőanyag terheléseinek csökkentésére Dr. Fleit Ernő, egyetemi docens.
Vízminőségi jellemzők
FOLYÓVIZEK OXIGÉN HÁZTARTÁSA
TRANSZPORT FOLYAMATOK
FOLYÓVIZEK OXIGÉN HÁZTARTÁSA
Kémiai szennyvíztisztítás
Energia és környezet A levegőtisztaság-védelem céljai és eszközei Levegőszennyezés matematikai modellezése.
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek.
KÖRNYEZETVÉDELEM VÍZVÉDELEM.
Vízminőségi modellezés. OXIGÉN HÁZTARTÁS.
Produkcióbiológia, Biogeokémiai ciklusok
Regionális szennyvíz rendszerek befogadó vízminőségére gyakorolt hatásai: Szennyvíz agglomerációkra vonatkozó EU követelmények és hazai szabályozás.
VÍZMINŐSÉGSZABÁLYOZÁS ESZKÖZEI
SZENNYVÍZTISZTÍTÁS.
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
KÉMIAI KEZELÉS ALKALMAZÁSA A SZENNYVÍZTISZTÍTÁSBAN
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
TÓ FOLYÓ VÍZMINŐSÉGSZABÁLYOZÁSI PÉLDA  C H3 Célállapot (befogadó határérték) Oldott oxigén koncentráció ChChChCh  C H2  C H2 - a 13 E 1 (1-X 1 ) - a.
Felszíni vizek minősége
Környezeti monitoring Feladat: Vízminőségi adatsor elemzése, terhelés (anyagáram) számítása Beadás: szorgalmi időszak vége (dec. 11.), KD: dec. 21.
VÍZFOLYÁSOK OXIGÉN HÁZTARTÁSA. SZENNYVÍZ HATÁSA (EMISSZIÓ – IMMISSZIÓ) BOI 5 emisszió nő, BOI 5 koncentráció nő, oldott O 2 koncentráció csökken (és fordítva)
Érzékenységvizsgálat
Példa: a Streeter-Phelps vízminőségi modell kalibrálása
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
-Érzékenység a paraméterek hibáira, -érzékenység a bemenő adatok hibáira Nézzünk egy egyszerű példát...
Emberi tevékenység Levegő Víz Föld Élővilág Művi környezet Ember Ökoszisztéma Települési környezet Táj.
11.ea.
Érzékenységvizsgálat a determinisztikus modell
Transzportfolyamatok II. 3. előadás
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
Környezetgazdaságtan Fonyó György Vízi Közmű és Környezetmérnöki Tanszék U épület,
Felszíni víz monitoring
Környezeti rendszerek modellezése
FOLYÓVIZEK OXIGÉN HÁZTARTÁSA
Vízminőség védelem A víz az ember számára: táplálkozás, higiénia, egészségügy, közlekedés, termelés A vízben található idegen anyagok - oldott gázok -
Energia-visszaforgatás élelmiszeripari szennyvizekből
Vízszennyezés.
Zsuga Katalin – Szabó Attila: A Tisza hazai vízgyűjtőterületének ökológiai állapota, környezetvédelmi problémái Győri Katalin Dorottya geográfus III. évf.,
Felszíni vizek minősége
KÖRNYEZETI MODELLEK MI A CÉLJA A MODELLEZÉSNEK? (MIBEN SEGÍTENEK A KÖRNYEZETI MODELLEK? BONYOLULT RENDSZEREK MEGISMERÉSE (Segítenek a kölcsönhatások.
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
Szennyvíz-tisztítás.
VÍZMINŐSÉG- SZABÁLYOZÁS.
KISVÍZFOLYÁSOK ÖKOLÓGIAI MEDERRENDEZÉSE
VÍZMINŐSÉGI PROBLÉMÁK
Felszíni vizek minősége és terhelhetősége: a vízminőség-szabályozás új feltételrendszere a VKI tükrében Dr. Clement Adrienne BME VÍZI KÖZMŰ ÉS KÖRNYEZETMÉRNÖKI.
VÍZFOLYÁSOK OXIGÉN- HÁZTARTÁSA. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) LÉGKÖRI OXIGÉNBEVITEL O2O2 KÉTVÁLTOZÓS.
A biológiai és a kémiai szennyvíztisztítás szimbiózisa
BAKTERIÁLIS SZENNYEZÉS
DUNA RÉSZVÍZGYŰJTŐ-GAZDÁLKODÁSI TERV FELÜLVIZSGÁLATA AZ ORSZÁGOS VÍZÜGYI FŐIGAZGATÓSÁG ÉS AZ ÉSZAK- DUNÁNTÚLI VÍZÜGYI IGAZGATÓSÁG SZAKMAI FÓRUMA FELSZÍNI.
A TISZA RÉSZVÍZGYŰJTŐ - GAZDÁLKODÁSI TERV FELÜLVIZSGÁLATA AZ ORSZÁGOS VÍZÜGYI FŐIGAZGATÓSÁG ÉS A KÖZÉP – TISZA - VIDÉKI VÍZÜGYI IGAZGATÓSÁG KÖZÖS SZAKMAI.
A VÍZGYŰJTŐ-GAZDÁLKODÁSI TERV FELÜLVIZSGÁLATA
VÍZMINŐSÉG,VÍZSZENNYEZÉSEK. VÍZMOLEKULA - H 2 O 1.4 milliárd km 3, a földkéreg felszínének 71 %-át borítja víz KÜLÖNLEGES KRISTÁLYSZERKEZET  SŰRŰSÉG.
Energia és környezet Szennyezőanyagok légköri terjedése Bevezető Dr. Gács Iván BME Energetikai Gépek és Rendszerek Tanszék
Ökológiai szempontok a szennyvíztisztításban
VÍZMINŐSÉGSZABÁLYOZÁSI PÉLDA
Mikroszkópos biológiai problémák kezelése és alkalmazása a vízbiztonsági tervekben május 09. Előadó: Fazekas Zoltán Technológiai osztályvezető.
Előadás másolata:

OXIGÉN HÁZTARTÁS

EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2

SZENNYVÍZ HATÁSA (EMISSZIÓ – IMMISSZIÓ)  BOI 5 emisszió nő, BOI 5 koncentráció nő, oldott O 2 koncentráció csökken (és fordítva)  O 2 fontos vízminőségi indikátor VÍZMINŐSÉGI OSZTÁLYOZÁS (O 2 esetére)  nyers szennyvíz: O mg/l  telítési koncentráció “tiszta” vízben (Henry törvény): ~ 10 mg/l (20 °C )  halak megóvása, szaporodása:  6 mg/l  eltérő érzékenység: ivadék kora, halfajok (pl. pisztráng 6-7 mg/l, ponty 4 mg/l)  vízhasználatok  integrált osztályozás

Felszíni vizek minősége (osztályozás az MSZ szerint) Oxigén háztartás Tápanyagok Bakteriológia Mikroszennyezők I. II. III. IV. V.

MÉRLEG SZERVESANYAG (C, N) ÜLEDÉK LÉGZÉS LÉGKÖRI DIFFÚZIÓ FOTOSZINTÉZIS MELLÉKFOLYÓK Oldott oxigén egyenlet:

BOI O2O2 TERHELÉSO 2 BEVITEL ÜLEPEDÉS Streeter & Phelps (1925, Ohio folyó)

nap O 2 fogyasztás Szerves szén (C) lebontása BOI  5 BOI 5 L Oxigén fogyasztás (BOI ~ 2.7 szerves C) L – maradék oxigén igény (BOI) - többlépcsős kinetika L0L0 L 0 = BOI  1. rendű kinetika (exponen- ciális) L = L 0 exp(-k 1 t) BOI 5 = BOI  - BOI  exp(-k 1 5)= BOI  (1-exp(-k 1 5)) BOI = L 0 - L 0 exp(-k 1 t)=L 0 (1-exp(-k 1 t))

Lebomlási tényező (k 1 ) Lebontási folyamatok sebességét jelzi, kinetikai állandó Dimenzió: 1/nap Hőmérsékletfüggő  = 1.04 T T limit 20C 1 Érvényesség ! Függ a szennyvíztisztítás mértékétől Technológiak 1 (T=20C)f Nincs tisztítás Mechanika Mechanika+kémiai kicsapatás Biológiai tiszt

Oxigén bevitel (légköri diffúzió) C < Cs C C s – telítési koncentráció Henry törvény: p = He C s p – parciális nyomás He – Henry szám f(T, P, sótartalom, stb.) T CsCs sótartalom TC s (mg/l)

Oxigén bevitel (légköri diffúzió, film elmélet) C V hh Molekuláris diff. tényező (m 2 /s) Oxigén átadási tényező (m/nap) Fajlagos oxigén beviteli tény.(1/nap) Megoldás: exponenciális (D = C S - C)

Oxigén beviteli tényező (k 2 ) Mi befolyásolja? - Áramlás jellemzői: turbulencia - Vízmélység, sebesség - Empirikus összefüggések - Érvényesség, dimenzió és kis H!!! EPA procedúrak 2  Mérés -Helyszíni nyomjelzős kísérletek illékony gáz injektálásával (etilén, propán, propilén, kripton)

Folyóra Q, v L h, C h q, L szv, C szv Feltételek: permanens (Q(t), E(t)=konst), 1D (azonnali elkeveredés) Szerves C (BOI) egyenlet: Vagy:levonulási idő (utazunk a folyón) L 0 számítása (1D): azonnali elkeveredés!

Folyóra Oldott oxigén (inhomogén lineáris diff. egyenlet) : D = C s - C deficit Q, v L h, C h q, L szv, C szv

Folyóra Q, v L h, C h q, L szv, C szv L x, t* LhLh L0L0 C ChCh C0C0 Cs C min x krit, t* krit D0D0 D max

Kritikus hely meghatározása Minimum:  0  2  1.5 – 2 nap Hígulás: L 0, D 0  D max, C min. Szabályozás. Iteráció. Mérés! Több szennyező: szuperponálható

Több szennyvízbevezetés Q, v L h, C h q 1, L szv 1, C szv 1 x, t* L LhLh L0L0 C ChCh C0C0 Cs C min x krit, t* krit D0D0 D max L h2 q 2, L szv 2, C szv 2 C h2 D o2

Streeter-Phelps (1925) oxigén modell Szervesanyag lebomlás egyenlete (L: BOI ∞ ) Oldott oxigén egyenlete (C: O 2 )

VÍZSZENNYEZÉS: Oxigén problémák

Példa: Szennyvízbevezetés hatása a befogadó oldott oxigén koncentrációjára (1 D, permanens) Települési szennyvíz jellemzői:LE BOI 5 koncentráció: 600 mg/l Kjeldahl N: 120 * 4.57 = 548 mg/l q = * 0.1 = m 3 /nap = 0.14 m 3 /s Befogadó vízfolyás jellemzői:Háttér koncentrációk: L h = 5 mg/l, C h = 8 mg/l T = 25 C, v = 0.5 m/s, Q = 15 m 3 /s, Cs = 8.4 mg/l k 1 = /nap, k 2 = 0.7 1/nap Kezdeti értékek: L 0 = 16.6 mg/l, D 0 = 0.47 mg/l Kritikus hely: t krit = 1.9 nap, x krit = 82 km C min = 3.6 mg/l Hígulás szerepe

Streeter-Phelps (1925) oxigén modell Továbbfejlesztések: 1.Nitrifikáció egyszerűsítve 2.Nitrifikáció részletesebben 3.Szervesanyag oldott és ülepedő frakciók különválasztása 4.Üledék oxigén igénye 5.Fotoszintézis, légzés 6.Speciális eset: anaerob szakasz számítása Szervesanyag lebomlás egyenlete (L: BOI ∞ ) Oldott oxigén egyenlete (C: O 2 )

Üledék oxigén igénye Okok: -szennyvíz ülepedő részecskéi iszapréteget képeznek -elhalt növények, falevelek felhalmozódása -alga ülepedés Magas szervesanyag tartalmú üledék (iszap): -felső részében aerob, alsó részében anaerob lebomlási folyamatok  oxigén elvonása a vízből -lebomlás  CO 2, CH 4, H 2 S képződés -gázképződés  felszálló buborékok, iszap flotációja -esztétikai problémák Közelítés: konstans (?) megoszló terhelés (S) „SOD” S (g O 2 / m 2,nap) ÜledékS (gO 2 /m 2,nap) Települési szennyvíz(iszap) bevezetés környezetében (4) Szennyvízbevezetés alatti szakaszon 1-2 (1.5) Homokos üledék0.2-1 (0.5) Árapályos folyamtorkolati iszap (0.07)

Nitrifikáció egyszerűsítve 5 20 nap BOI BOI C BOI N Kjeldahl N (Szerves N, NH4-N) - L N --> mérés Két lépés: Nitrosomonas 2NH O 2  2NO H 2 O + 4H + Nitrobacter2NO O 2  2NO g O g O 2  : 4.57 g O 2 L N =4.57Kjeldahl N (N BOI -- kevés?) Feltételek: - Nitrifikáló (aerob autotróf) baktériumok, - Lúgos környezet (pH > 6), - Oxigén jelenléte, oldott oxigén > 1-2 mg/l, - Toxikus anyagok gátolják! Tisztított sz.víz? - Hőmérsékletfüggő - Legegyszerűbb leírás: BOI = C BOI + N BOI

Fotoszintézis, légzés 6CO 2 + 6H 2 0  C 6 H 12 O 6 + 6O 2 Napfény, glükóz Fotoszintézis (P mgO 2 /m 3,nap) 6CO 2 + 6H 2 0  C 6 H 12 O 6 + 6O 2 Légzés (R mgO 2 /m 3,nap) Sötétben t (h) P, R 24 t (h) O2O2 24 Cs túltelítettség CC t1t1 t2t2 PaPa PmPm Napi átlagos O 2 termelés Pm mérésből: fotoperiódus

Szabályozás: oxigén háztartás javítása Emisszió csökkentése: Szennyvíztisztítás Települési (kommunális szennyvíz) – BOI, kN Ipari szennyvíz: élelmiszeripar (konzervgyár, vágóhíd, húsüzem, cukorgyár, szeszipar stb – BOI,KOI, kN), vegyipar (műtrágyagyártás – NH4), papírgyártás (KOI) Szennyvíz tisztítási technológia Rel. költségekTisztítási hatásfok (%)N formák (%) BerÜzemBOIÖNÖPNH 4 NO 3 Mechanika M + Kicsapatás Nagyterhelésű biológia Kisterhelésű biológia Nagyterhelésű Bio + P Kisterhelésű Bio + P NB +P +részleges N NB + P + teljes N

Vízminőségi hatások különböző hígulási viszonyok esetén az alkalmazott tisztítási technológia függvényében

HÍGULÁSI ARÁNY (2003) Dilution (Q/q)

HÍGULÁSI ARÁNY (2015)

Szabályozás: oxigén háztartás javítása Települési diffúz emisszió csökkentése: Csatornázás, rákötés a meglévő rendszerre - illegális szennyvízbevezetések felszámolása Házi szennyvíztisztítók (oldómedence, szikkasztás) Belterületi állattartás szabályozása (trágyatárolás) Állattartó telepek (BOI, NH4-N) Megfelelő trágyatárolás Hígtrágyás állattartás  almos trágyázás, mezőgazadasági felhasználás (újrahasznosítás) Öntisztulás javítása, oxigén bevitel fokozása: Fenéklépcső, fenékküszöb, szűkület, bukó stb. (hosszirányú átjárhatóság korlátozása miatt ökológiai szempontból nem jó) Természetközeli (ökológiai szemléletű) mederrendezés Csobogók, kanyargós meder, hosszabb tartózkodási idő, parti zóna megléte, gazdagabb élővilág Hipolimnion (alsó réteg) levegőztetése, cirkuláció (csak mély tavakban) Iszapkotrás, üledék eltávolítása (folyók, tavak)

Belterületi szakasz: Egyenes, burkolt trapézmeder

Benőtt meder

Kisvízi meder kiszélesítése, lankás rézsű - meanderezés kialakul Belterületi természetes állapotú szakasz

Kombinált partvédelem elhabolás ellen Árnyékolt meder

Függőleges vonalvezetés, fenéklépcső Függőleges vonalvezetés, surrantó

Az oxigén beviteli tényező hatása a kritikus oxigén koncentrációra, különböző hígulási arányok mellett

Nitrifikáció Leíró egyenletek (C BOI, N BOI, DO): 1 2 Egyszerű N forgalom N1 N2 N3 Ülepedés Denitrifikáció Növényi asszimiláció Hidrolízis, ammonifi- káció Nitrifikáció O2O2O2O2 N1 – szerves N, N2 – NH4-N N3 – NO2-N, NO3-N N1N1 N2N2 N3N3 Oldott O 2 egyenletbe: - k nitrif 4.57 N2

Szervesanyag oldott és ülepedő frakciók különválasztása L p = f p Lpartikulált L d = f d Loldott t L0L0 ülepedés biológiai oxidáció

Üledék oxigén igénye Okok: -szennyvíz ülepedő részecskéi iszapréteget képeznek -elhalt növények, falevelek felhalmozódása -alga ülepedés Magas szervesanyag tartalmú üledék (iszap): -felső részében aerob, alsó részében anaerob lebomlási folyamatok  oxigén elvonása a vízből -lebomlás  CO 2, CH 4, H 2 S képződés -gázképződés  felszálló buborékok, iszap flotációja -esztétikai problémák Közelítés: konstans (?) megoszló terhelés (S) „SOD” S (g O 2 / m 2,nap) ÜledékS (gO 2 /m 2,nap) Települési szennyvíz(iszap) bevezetés környezetében (4) Szennyvízbevezetés alatti szakaszon 1-2 (1.5) Homokos üledék0.2-1 (0.5) Árapályos folyamtorkolati iszap (0.07)

Fotoszintézis, légzés 6CO 2 + 6H 2 0  C 6 H 12 O 6 + 6O 2 Napfény, glükóz Fotoszintézis (P mgO 2 /m 3,nap) 6CO 2 + 6H 2 0  C 6 H 12 O 6 + 6O 2 Légzés (R mgO 2 /m 3,nap) Sötétben t (h) P, R 24 t (h) O2O2 24 Cs túltelítettség CC t1t1 t2t2 PaPa PmPm Napi átlagos O 2 termelés Pm mérésből: fotoperiódus R, P számításból: alga egyenlet (Klorofill-a * a = P) Oldott O 2 egyenletbe

Oxigén vonal (ill. összes oldott oxigén deficit) számítása Deficit kezdeti értéke Szerves C lebontás Nitrifikáció Üledék oxigén igénye Fotoszintézis Vízinövényzet légzése

Anaerob szakasz számítása Nagy terhelés Időszakos vagy állandósult anaerob állapot Anaerob lebomlás, gázképződés, fémek visszaoldódása C t* L x1x1 1. Anaerob szakasz kezdete: x 1 (C=0) 2. Anaerob szakasz: x1x1 L1L1 3. Anaerob szakasz vége: x 2 x2x2 L2L2 x2x2