Nukleotidok, nukleinsavak

Slides:



Advertisements
Hasonló előadás
Az “sejt gépei” az enzimek
Advertisements

A fehérjék.
IZOENZIMEK Definíció: azonos funkció, de: eltérő primer szerkezet,
Nitrogén tartalmú szerves vegyületek
Biokémia fontolva haladóknak II.
ENZIMOLÓGIA 2010.
DNS replikáció DNS RNS Fehérje
DNS replikáció DNS RNS Fehérje
DNS replikáció: tökéletes másolat osztódáskor
Nukleinsavak – az öröklődés molekulái
A sejtet felépítő kémiai anyagok
Természetismeret DNS RNS A nukleinsavak.
Fehérjeszintézis Szakaszai Transzkripció (átírás)
Az élő szervezeteket felépítő anyagok
LEBONTÁSI FOLYAMATOK.
BIOKÉMIA I..
Szénhidrátok.
A sejt kémiája MOLEKULA C, H, N, O – tartalmú vegyületek (96,5 %).
Kéntartalmú szerves vegyületek, Nitrogéntartalmú szerves vegyületek
Pentózfoszfát-ciklus
A nukleinsavak.
A nukleinsavak.
Nukleotidok.
EGYÉB HATÁSOK AZ ENZIMAKTIVITÁSRA BIM SB 2001 Ionerősség pH Hőmérséklet Nyírás Nyomás (hidrosztatikai) Felületi feszültség Kémiai szerek (alkohol, urea,
Géntechnikák Laboratórium
Egészségügyi mérnököknek 2010
EGYÉB HATÁSOK AZ ENZIMAKTIVITÁSRA BIM BSc 2007 Ionerősség pH Hőmérséklet Nyírás Nyomás (hidrosztatikai) Felületi feszültség Kémiai szerek (alkohol, urea,
A szénhidrátok.
Nukleotid típusú vegyületek
NUKLEINSAVAK MBI®.
Aminosavak és fehérjék
A DNS szerkezete és replikációja
Nukleinsavak és a fehérjék bioszintézise
Nukleotid típusú vegyületek: nukleinsavak és szabad nukleotidok
A DNS szerkezete és replikációja
Nukleozidok, nukleotidok, nukleinsavak
A légzés fogalma és jelentősége
IN VITRO MUTAGENEZIS Buday László.
A foszfát csoport az S, T és Y oldalláncok hidroxil- csoportjához kapcsolódik.
Az RNS világ, hibaküszöb
Nukleinsavak énGÉN….öGÉN.
Replikáció, transzkripció, transzláció
Nukleotidok anyagcseréje
Koenzim regenerálás Sok enzimes reakcióhoz sztöchiometrikus mennyiségű koszubszt-rátra van szükség. Leggyakrabban ez NAD vagy NADP. Ezek olyan drága anyagok,
A fehérjék biológiai jelentősége, felépítése, tulajdonságai Amiláz molekula három dimenziós ábrája.
Nukleinsavak Felfedezésük, típusaik Biológiai feladatuk Kémiai felépítésük Pentózok Foszforsav N-tartalmú bázisok Purin bázisokPirimidin bázisok.
34. lecke A fehérjék felépítése a sejtben. Lényege: Lényege:  20 féle aminosavból polipeptidlánc (fehérjelánc) képződik  A polipeptidlánc aminosav sorrendjét.
24. lecke Nuklein- vegyületek. A nukleotidok Összetett szerves vegyületek építőmolekulái: építőmolekulái:  5 C atomos cukor (pentóz)  Ribóz  Dezoxi-ribóz.
30. Lecke Az anyagcsere általános jellemzői
Szénhidrátok. A bioszféra szerves anyagának fő tömege Döntően a fotoszintézis során keletkezik szén-dioxid + víz + fényenergia = szénhidrát + oxigén.
Nukleinsavak. Nukleinsavak fontossága Az élő szervezet nélkülözhetetlen, minden sejtben megtalálható szénvegyületei  öröklődés  fehérjék szintézise.
Biokémia fontolva haladóknak II.
Hormonokról általában Hormonhatás mechanizmusa
AZ ÉLET MOLEKULÁI.
Biomérnököknek, Vegyészmérnököknek
Cukrok oxigén BIOKÉMIA VÍZ zsírok Fehérjék szteroidok DNS.
Bio- és vegyészmérnököknek 2015
DNS replikáció DNS RNS Fehérje
22. lecke A szénhidrátok.
A nukleinsavak szerkezete
Nukleinsavak • természetes poliészterek,
Molekuláris biológiai módszerek
ENZIMOLÓGIA.
A DNS replikációja Makó Katalin.
Hattagú heterociklusos vegyületek
A DNS szerkezete és replikációja. Mit kell „tudnia” a genetikai anyagnak? 1. Rendelkeznie kell az információ tárolásának képességével. Tehát kémiailag.
Nukleotidok és nukleinsavak
Nukleotidok, nukleinsavak
A nukleinsavak.
Nukleotidok.
Előadás másolata:

Nukleotidok, nukleinsavak

Nukleotidok A nukleotidok sokoldalú szerepet játszanak a biológiai folyamatokban: 1. A DNS és RNS prekurzorai 2. Energiaközvetítők (pl. ATP) 3. Regulációs molekulák (pl. cAMP, cGMP) 4. Koenzim komponensek (pl. NAD, FAD, CoA) 5. Származékaik a szénhidrát- és lipidanyagcsere intermedierjei (pl. UDP- glükóz , CDP- diacil- glicerol)

A nukleotidok szerkezete • heterociklusos bázis /Purin vagy Pirimidin. A pirimidingyűrű planáris (egy síkban helyezkedik el), a purinváz kissé hajlott./ pentóz /ribóz vagy dezoxiribóz/ foszforsav

A bázis - N – glikozidkötéssel kapcsolódik a pentóz 1 A bázis - N – glikozidkötéssel kapcsolódik a pentóz 1. C-atomjához, a foszfát pedig észterkötéssel a pentóz 5. C-atomjához. A bázisok legfontosabb reakciói → A pirimidin bázisoknál fontos a tautomer (laktim és laktám) átalakulás: A laktám formában található nitrogénen szubszituálható hidrogén a feltétele a cukorrészhez való kapcsolódásnak. • UV fény hatására két T gyűrű összekapcsolódik → a DNS irreverzibilisen károsodik (Ez az egyik alapja az UV fény baktériumölő hatásának). A C spontán dezaminálódása során U keletkezik /javító mechanizmusok korrigálhatják/ Aromás jellegük miatt UV tartományban fényelnyelésük van

A mononukleotidok legfontosabb képviselői 1. ATP 2. cAMP 3. koA 4. FMN (flavin-mononukleotid)

ATP

cAMP • Második hírvivő (second messenger)

koA acetilcsoport szállítása

FMN (flavin-mononukleotid)

Dinukleotidok 1. NAD(P) NAD+ , NADP+ Hidrogénszállító koenzimek A NAD(P)+ hidrogénkötése: NAD(P)+ 2H  NAD(P)H + H+ A NAD(P)+ redukciójakor az aromás gyűrű kinoidális formává alakul, melynek 340 nm hullámhosszon maximuma van.→ A NAD+ -dal ill. NADP+ -val működő enzimek által katalizált reakció spektrofotometriás úton való követésére van lehetőség. 2. FAD Flavin-adenin-dinukleotid / Adenozin két foszfáton keresztül kapcsolódik a riboflavinhoz (B2 vitamin)/ D-ribitol+6,7 dimetil-izoalloxazin (FMN+AMP)

Nukleinsavak /polinukleotidok/ DNS, RNS Közös tulajdonságok nukleotidokból épülnek fel foszfátdiészter kötéssel kapcsolódnak egymáshoz (5’ OH a másik 3’ OH-jával) nem tartalmaznak elágazásokat az 1. nukleotid az, amelynek az 5’ OH-ja foszforilált a láncvégi /utolsó/ nukleotid 3’ OH-ja szabad Különbségek DNS: A, G, C, T, dezoxiribóz RNS: A, G, C, U – csak az RNS-ben, ribóz DNS: rendezett RNS: nem teljes hosszában rendezett

A DNS főbb jellegzetességei jobbmenetes (B- DNS) a két szál antiparalel A és T között két hidrogénhíd-, G és C között három hidrogénhíd kötés alakul ki. 1 menet magassága: 3,4 nm 1 meneten belül 10 bázispár található típusai B-, A-, Z- DNS - B-DNS jobbmenetes, Watson-Crick modell /vizes közegben/ - A-DNS dehidratálva jobbmenetes marad, de vastagszik és rövidül - Z-DNS balmenetes • palindrom szekvenciák (restrikciós endonukleázok itt hasítanak)

A nukleinsavakat bontó enzimek A nukleinsavakat bontó enzimek a nukleázok /(dezoxi)ribonukleázok/ →foszfodiészter kötést hasítanak Exonukleázok –a végső (foszfodiészter) kötéseket hasítják • a típusú nukleázok a 3’ OH-csoportot teszik szabaddá • b típusú nukleázok a 5’ OH-csoportot teszik szabaddá Endonukleázok – a végtől távolabb lévő kötéseket hasítják. → specifikus csoportjai a restrikciós endonukleázok • I. típusú endonukleáz: nukleáz aktivitás és metilezés a saját DNS-t metilezik • II. típusú endonukleáz: a kettős szálú DNS-t palindrom szekvenciánál hasítják

A DNS szerkezet stabilizálásában fontosak: - a bázisok közötti H-hidak - a bázisok közötti apoláros kölcsönhatások A két szálat összetartó erők megbonthatók: - pH változtatásával - szerves oldószerekkel - hő hatására az apoláros oldalláncok poláros környezetbe kerülnek → fényelnyelés megnő /hiperkróm hatás/ A DNS „megolvad” / az olvadáspont függ a bázisössze- tételtől; G+C aránnyal nő (3H-híd kötés miatt) - pH-tól - ionerősségtől A DNS az eukariota sejtekben hiszton fehérjékhez kötődik → szupercsavart szerkezet alakul ki.

RNS- típusai mRNS tRNS rRNS