2005. 09. 28. KOLLOID OLDATOK.

Slides:



Advertisements
Hasonló előadás
Az abszorpció Fizikai abszorpció, amikor a gázkomponens csak egyszerűen oldódik az abszorbensben. Ilyenkor a komponens oldódását az egyensúlyi viszonyok,
Advertisements

A halmazállapot-változások
Készítette: Bráz Viktória
Halmazállapotok, állapotváltozások
Szétválasztási módszerek, alkalmazások
Elektromos alapismeretek
A szubsztancia részecskés felépítése és
1. Megszilárdulás (kristályosodás)
1. Termodinamikai alapfogalmak Mire kell? A mindennapi gyakorlatban előforduló jelenségek (például fázisátalakulások, olvadás, dermedés, párolgás) értelmezéséhez,
Kolloidok, felületek Kolloid rendszerek:
Faiparban alkalmazott polimerek
SÓOLDATOK KÉMHATÁSA PUFFEROLDATOK
OLDATOK KOLLIGATÍV TULAJDONSÁGAI
HETEROGÉN RENDSZEREK SZÉTVÁLASZTÁSA
Készítette Varga István VEGYÉSZETI-ÉLELMISZERIPARI KÖZÉPISKOLA CSÓKA
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Derítés.
Anyagismeret 2. Fémek és ötvözetek.
Új irányzatok a biológiában Fehérjék szerkezete, felosztása
A határfelületi jelenségek szerepe a kolloid diszperziók viselkedésében, kinetikai stabilitásában A fáziskolloidok termodinamikailag nem stabilak, csak.
Asszociációs (micellás) kolloidok (vizes rendszerek)
A mikrofázisok közötti taszító és vonzó kölcsönhatások: DLVO-elmélet
Gélelektroforézis Molina Csaba.
Kémiai baleset egy fővárosi gimnáziumban, öten megsérültek
 Selyemfonálra függesztünk egy alumíniumfonálból készített üreges hengert.  A henger nincs elektromosan töltve.  Elektromosan töltött rúddal közelítünk.
Mit tudunk már az anyagok elektromos tulajdonságairól
A víz.
A kolloidok.
TALAJ KÉMIAI TULAJDONSÁGAI
Oldószermodellek a kvantumkémiában A kémiai reakciók legnagyobb része oldószerben játszódik le (jelentőség) 1. Az oldószermodellek elve 2.
Bioszeparációs technikák ELVÁLASZTÁSTECHNIKA
Halmazállapot-változások
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Az anyag néhány tulajdonsága, kölcsönhatások
Az anyagok részecskeszerkezete
Az oldatok.
A keverékek szétválasztása alkotórészeikre
ÖSSZEGOGLALÁS KEVERÉKEK OLDATOK ELEGYEK.
A víz aqua.
KOLLOID OLDATOK.
Halmazállapotok Gáz, folyadék, szilárd.
A kvantum rendszer.
A negyedik halmazállapot: A Plazma halmazállapot
Oldatkészítés, oldatok, oldódás
Elektromos áram, áramkör
Szupermakropórusos polimerek
Halmazállapotok Gáz Avogadro törvénye: azonos nyomású és hőmérsékletű gázok egyenlő térfogatában – az anyagi minőségtől, molekula méretétől függetlenül.
Többkomponensű rendszerek II.
Ionok, ionvegyületek Konyhasó.
Általános kémia előadás Gyógyszertári asszisztens képzés Anyagi rendszerek leírása, oldatok összetétele II. Szerkesztette:dr. Kalmár Éva és Dr. Kormányos.
Általános kémia előadás Gyógyszertári asszisztens képzés
Kolloidika, határfelületi jelenségek Szekrényesy: Kolloidika (BME jegyzet) Szántó Ferenc: A kolloidkémia alapjai.
"Víz! Se ízed nincs, se zamatod, nem lehet meghatározni téged, megízlelnek, anélkül, hogy megismernének. Nem szükséges vagy az életben: maga az élet vagy."
A nagyon sok részecskéből álló anyagok
keverékek szétválasztása
I. Az anyag részecskéi Emlékeztető.
BELÉPÉS A RÉSZECSKÉK BIRODALMÁBA
KÖLCSÖNHATÁSOK.
Szervetlen vegyületek
Az oldatok.
Áramlástani alapok évfolyam
Az anyagi rendszer fogalma, csoportosítása
A folyadékállapot.
Az anyagi rendszer fogalma, csoportosítása
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
OLDATOK.
Folyadék halmazállapot
Híg oldatok tulajdonságai
OLDATOK.
Híg oldatok tulajdonságai
Előadás másolata:

2005. 09. 28. KOLLOID OLDATOK

Heterogén rendszerekben A többkomponensű anyagi rendszerek csoportosítása részecske mérete alapján: Heterogén rendszerekben a részecske méret 500 nm-nél nagyobb szabad szemmel vagy mikroszkóppal jól látható. Homogén rendszerekben a részecske méret 1 nm-nél kisebb a részecskék sem szabad szemmel sem mikroszkóppal nem észlelhetők. Kolloid oldatoknak Az 1-500 nm átmérőjű oldott részecskéket tartalmazó oldatok sem szabad szemmel sem fénymikroszkóppal nem különböztethetők meg az oldott részecskék.

Kolloid oldatok némely tulajdonságban hasonlíthatók a valódi oldatokhoz. Az eltérő fizikai tulajdonságokat a diszpergált részecskék mérete okozzák. Kis tömeg és a nagy fajlagos felület. Diszpergáló fázis: az oldószer Diszpergált anyagnak: az oldott anyag

Kolloid oldatok tulajdonságai Tyndall jelenség: A kolloid rendszeren átbocsátott fény a nagyméretű oldott részecskék felületén szóródik, úgy látjuk, hogy a részecskék világítani kezdenek a beeső fény hatására. Valódi tiszta oldatoknál a fényszóródás nélkül halad tovább a fény.

Oldatokban az oldószer és oldott anyag részecskéi állandó diffúz mozgásban vannak. Brown-mozgás: A részecskék rendezetlen mozgása. A kolloid oldatokban a nagyméretű oldott részecskék a méretüktől függően ülepednek le az edény aljára.

A nagy fajlagos felület miatt a kolloid rendszerek adszorpciós készsége nagy. A nagy felületi energia csökkenését a részecskék összetapadásával aggregációjával kívánják elérni Koaguálás: Olyan folyamat, melynek során a kolloidok kiválnak az oldatból aggregáció útján.

Kolloidok csoportosítása A kolloid rendszerek csoportosítása a diszpergáló anyag és a diszpergáló fázis halmazállapota szerint történik. Aeroszol: Egy gázhalmazállapotú rendszerbe diszpergálunk szilárd vagy folyadék anyagokat. (pl. füst, köd) Emulziók: Folyadékban diszpergálunk szilárd anyagot vagy folyadék cseppeket. Emulzifikáló anyag: a stabil emulzió képződéséhez szükséges segédanyag. Szolok: szilárd anyagban diszpergált folyadékcseppek

diszpergáló fázis diszpergált anyag kolloid neve példa gáz folyadék aeroszol köd gáz szilárd aeroszol füst folyadék gáz hab tejszínhab folyadék folyadék emulzió majonéz , tej folyadék szilárd szol AgCl(sz) (vízben), sár szilárd gáz hab műanyag habok szilárd folyadék gél zselé, sajt szilárd szilárd szilárd szol zárványok, színes üveg

Hidrofil kolloidok Hidrofil kolloidok: Az olyan kolloidok amelyekben a víz molekulák és a diszpergált részecskék között erős kölcsönhatás alakul ki. Stabilak: A kialakult erős kölcsönhatás miatt. A diszpergált részecskék a nagy felületükön vízmolekulákat adszorbeálnak, így megakadályozzák a részecskék aggregációját. Például: fehérjék vizes oldata, keményítő vizes oldata, zselatin

Aggregációt elősegítése Ha olyan anyagot juttatunk az oldatba, amelyek megkötik a víz molekulákat, akkor az a diszpergált részecskék összetapadnak. Kisózás: Ionvegyületet juttatunk az oldatba azok teljes mértékben disszociálnak majd a disszociált ionok hidratálódnak A diszpergált részecskék összetapadnak, koagulálódnak. Reverzibilis folyamat Ha valamilyen fizikai módszerrel eltávolítjuk az oldott ionokat, a kolloid részecskék újból diszpergálódnak.

Hidrofób kolloidok Hidrofób kolloidok: Amikor a víz, mint diszpergáló fázis és a diszpergált részecske között nem jön létre kölcsönhatás Nem stabilak: könnyen elválik a két összetevő egymástól. Például: Túltelített oldatok, arany vízben, Fe(OH)3 oldat

Túltelített oldatokból gyors kristályosodás esetén csak kisméretű kristályok keletkeznek. Ha a kristályok mindegyike vagy pozitív, vagy negatív töltésű akkor az ilyen kolloidok stabilak, mivel az azonos töltésű részecskék taszítják egymást. A kolloid rendszerek összességében semlegesek, de a pozitív és negatív töltések eloszlása a kolloid rendszeren belül nem azonos. Ha elektromos erőtérbe helyezzük, jól megfigyelhető, hogy a részecskék attól függően, hogy milyen töltésűek az ellentétes pólus felé vándorolnak

Asszociációs kolloidok Micellák: Az olyan molekulák amelyek hidrofil (karboxil csoport) és hidrofób (hosszú alkillánc) csoportokat is tartalmaznak vízben való oldásukkor óriás molekulákat hoznak létre