Elválasztó módszerek az analitikai kémiában

Slides:



Advertisements
Hasonló előadás
A vízben oldott oxigén meghatározása
Advertisements

A megoszlási egyensúly
Porleválasztó berendezések
Reakció tipusok (2.-3. óra)
Kristályrácstípusok MBI®.
AZ ANYAGOK CSOPORTOSÍTÁSA
HIDROGÉN-KLORID.
A nyersvasgyártás betétanyagai:
A H N J B D F C E G S P Q M O C% T K S’ E’ C’ K’ F’ D’ L P’ δ
A talaj összes nitrogén tartalmának meghatározása
Kémiai alapozó labor a 13. H osztály részére 2011/2012
Kémiai alapozó labor a 13. H osztály részére 2011/2012
Analitikai Kémia.
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek.
A fémek és ötvözetek kristályosodása, átalakulása
Helyettesítési reakció
Redoxi-reakciók, elektrokémia Vizes elektrolitok
Sav-bázis egyensúlyok
SÓOLDATOK KÉMHATÁSA PUFFEROLDATOK
A HIDROGÉN.
KOLLOID OLDATOK.
Kapilláris elektroforézis
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
13.Óra AZ OLDATOK TÖMÉNYSÉGE
Anyagismeret 2. Fémek és ötvözetek.
Az elemek lehetséges oxidációs számai
Heterogén kémiai egyensúly
Sav bázis egyensúlyok vizes oldatban
Kémiai egyensúlyok A kémiai reakciók reakcióidő szempontjából lehetnek: pillanatreakciók időreakciók A reakciók lehetnek. egyirányú egyensúlyi reakciók.
A KÉMIAI EGYENSÚLY A REAKCIÓK MEGFORDÍTHATÓK. Tehát nem játszódnak le végig, egyensúly alakul ki a REAKTÁNSOK és a TERMÉKEK között. Egyensúlyban a termékekhez.
Kémiai reakciók katalízis
Reakciók vizes közegben, vizes oldatokban
A fémrács.
Koaguláció. Kolloid részecske és elektrosztatikus mezője Nyírási sík (shear plane): ezen belül a víz a részecskével együtt mozog Zéta-potenciál: a nyírási.
Koaguláció.
1. Kísérletek kén-hidrogénnel
Reakciótípusok.
Magnézium-szulfát- és alumínium-szulfát reakciói
25. Nátrium-karbonát, kálium-bromid és kalcium-karbonát azonosítása
TALAJ KÉMIAI TULAJDONSÁGAI
Természetes szénvegyületek
OLDÓDÁS.
Bioszeparációs technikák ELVÁLASZTÁSTECHNIKA
A sósav és a kloridok 8. osztály.
Második rész III. kationosztály elemzése 2011
Az oldatok.
ÖSSZEGOGLALÁS KEVERÉKEK OLDATOK ELEGYEK.
SAVAK és BÁZISOK A savak olyan vegyületek,amelyek oldásakor hidroxidionok jutnak az oldatba. víz HCl H+(aq) + Cl- (aq) A bázisok olyan vegyületek.
Első rész III. kationosztály elemzése 2011 Készítette Fogarasi József
A Föld vízkészlete.
8. Csapadékos titrálások
Oldatkészítés, oldatok, oldódás
Kémiai reakciók Kémiai reakció feltételei: Aktivált komplexum:
Halmazállapotok Gáz Avogadro törvénye: azonos nyomású és hőmérsékletű gázok egyenlő térfogatában – az anyagi minőségtől, molekula méretétől függetlenül.
Előadó: Dr. Dóró Tünde 2011/12, I. félév III. előadás
Méréstechnika gyakorlat II/14. évfolyam
Fizikai alapmennyiségek mérése
Oldat = oldószer + oldott anyag (pl.: víz + só, vagy benzin + olaj )
Koncentráció, Gravimetria Készítette: Fábián Alexandra
Általános kémia előadás Gyógyszertári asszisztens képzés
keverékek szétválasztása
Az oldatok.
Készítette: Szenyéri veronika
Méréstechnika 1/15. ML osztály részére 2017.
A minta-előkészítés műveletei
Analitikai számítások a műszeres analitikusoknak
OLDATOK.
OLDATOK.
Előadás másolata:

Elválasztó módszerek az analitikai kémiában

Elválasztó módszerek – miért van rájuk szükség? a valós rendszerek mindig többkomponensűek nincsen minden anyagra specifikus reagens/reagens sor, amely az egymás melletti kimutatást/meghatározást lehetővé teszi az analízis egyszerűbb és megbízhatóbb, ha az analizálandó minta csak egyfajta komponenst tartalmaz ezért az analízis előtt a minta komponenseit egymástól többé-kevésbé el kell választani az elválasztás az elválasztandó komponens másik fázisba (csapadék, gáz, nem elegyedő folyadék) való átmenete az anyag megoszlása egymással érintkező fázisok között történik

Elválasztó módszerek típusai Eltérő oldhatóságon alapul: szelektív kioldás (szilárd folyadék) szelektív lecsapás (folyadék  szilárd ) oldószer extrakció (folyadék  folyadék ) Eltérő illékonyságon alapul: szublimáció (szilárd  gáz) desztilláció (folyadék  gáz ) Eltérő szorpciós készségen, megoszláson ill. ioncserén alapul: kromatográfiás módszerek ioncserés módszerek  !

Elválasztás mértékének jellemzése megoszlási állandó megoszlási hányados termodinamikai állandó látszólagos állandó

Az elválasztás hatékonyságának jellemzése Kinyerési tényező: QA az A anyag új fázisba jutott mennyisége QA0 az A anyag összmennyisége Ideális esetben RA = 1 Szeparációs (dúsítási) tényező: Ideális esetben RA = 1 és S = RB (~ 10-3 - 10-6)

ELVÁLASZTÁSI TECHNIKÁK 1. Fázis átalakulással járó módszerek tömeg szerinti elemzés elektrogravimetria gázfejlődéssel járó elválasztások zónaolvasztás 2. Extrakciós módszerek 3. Kromatográfia

TÖMEG SZERINTI ELEMZÉS Olyan mennyiségi analitikai eljárás, amelyben a meghatározandó komponenst specifikus körülmények között csapadékformába visszük, amit az oldattól elválasztunk, megfelelő módszerrel sztöchiometriásan ismert összetételű vegyületté alakítjuk és lemérjük. Lépései: lecsapás, szűrés, mosás, hőkezelés, mérés SZELEKTÍV LEVÁLASZTÁS: kis oldhatóságú, jól szürhető csapadék kis oldhatóságú csapadék: lásd a csapadékképződési egyensúlyok részt + részecskeméret és az idő hatása

TÖMEG SZERINTI ELEMZÉS Részecskeméret hatása A csapadékos oldat a kis méretű részecskékre nézve telítetlen, a nagy métretűekre nézve pedig túltelített → izoterm átkristályosodás Az idő hatása Idővel kristályszerkezeti módosulás következhet be, ami jelentős mértékben megváltoztatja az oldhatósági viszonyokat (pl. NiS, CoS α és β módosulat oldhatósága HCl-ban)

TÖMEG SZERINTI ELEMZÉS Jól szürhető (makrokristályos) csapadék nyerése A relatív túltelítettség [(Q-S)/S] kis értéken tartása ahol S: egyensúlyi oldhatóság Q: az oldott anyag aktuális koncentrációja S növelése: a hőmérséklet emelésével Q csökkentése: a hígitás növelésével a lecsapószer lassú adagolásával jó keverés biztosításával

TÖMEG SZERINTI ELEMZÉS Megvalósítás módjai: leválasztás extrém híg oldatokból leválasztás extrém tömény oldatokból leválasztás híg oldatból, melegen, csepegtetve adagolással, keverés közben leválasztás homogén közegből pl. CO(NH2)2 + H2O → 2 NH3 + CO2 CH3C(S)NH2 + H2O → H2S + CH3C(O)NH2

CSAPADÉK HOMOGÉN LEVÁLASZTÁSA Fe(OH)3 csapadék leválasztása NH3 oldattal és homogén módon karbamid oldatból

TÖMEG SZERINTI ELEMZÉS SZŰRÉS szűrőközeg lehet: szűrőpapír (pórusméret, hamutartalom) zsugorított üvegszemcse-réteg (pórusméret) szürőközeg megválasztása a hőkezelés módjától függően izzítás: papír, szárítás: üvegszűrő szűrés gyorsítása: dekantálva, melegen szűrés nyomáskülönbség alkalmazása

TÖMEG SZERINTI ELEMZÉS MOSÁS A szennyező, idegen ionok eltávolítása a peptizáció (a csapadék kolloidális oldódásának) elkerülésével. Ionkristályos csapadékot a csapadékkal telített elektrolit oldattal mosunk. Az ionok a vízmolekulákat elvonják a csapadékszemcsék felületéről, csökkentve az oldott anyag-oldószer kölcsönhatást. Pl. fémhidroxidot NH3-ás NH4Cl oldattal szulfidot H2S-es vízzel

TÖMEG SZERINTI ELEMZÉS HŐKEZELÉS Pontos szöchiometriai összetételű vegyületté való alakítás Termogravimetriás görbék információtartalma Hőkezelés: Szárítás kb. 150-200 oC-ig Izzítás e hőmérséklet fölött egészen 1000-1200 oC-ig Súlyállandóság elérése

TÖMEG SZERINTI ELEMZÉS GYAKORLATI PÉLDÁK d10 átmenetifémek szulfidok formájában, pl. Hg2+, Ag+, Bi3+, Cd2+, átmenetifémek hidroxid formában, pl. Fe3+, Al3+, Cr3+, Mn2+, AgCl, BaSO4, ammóniumfoszfátok, pl. Mg2+, Cd2+, Mn2+, Co2+, Zn2+,

TÖMEG SZERINTI ELEMZÉS GYAKORLATI PÉLDÁK Szerves komplexképzők (a reakciók specifikussá tétele) Ni2+: dimetilglioximmal Átmeneti fémek (Al3+, Cu2+, Zn2+) 8-hidroxi-kinolinnal NiII(dimetil-glioxamát)2 MII(oxinát)2

GÁZFEJLŐDÉSSEL JÁRÓ REAKCIÓK Hlg-, CO32- meghatározás 2Cl- + H2SO4 = 2HCl↑ + SO42- A HCl gázt ismert mennyiségű NaOH oldatba desztilláljuk sav mérőoldattal és a felesleget visszamérjük. CO32- + H2SO4 = H2O + CO2↑ + SO42- A CO2-ot Ca(OH)2 vagy Ba(OH)2 oldatba desztilláljuk és rosszul oldódó CaCO3 vagy BaCO3 formában gravimetriásan mérjük.

GÁZFEJLŐDÉSSEL JÁRÓ REAKCIÓK SiO2 meghatározás SiO2 + 4HF = SiF4↑ + 2H2O a minta tömegcsökkenéséből következtetünk a SiO2 tartalomra, mert a SiF4 hidrolízise nem teljes SiF4 + 2H2O = SiO2 + [SiF6]2- 2H+ + 2F- így a kiváló kovasav gravimetriás mérése révén nem tudunk a pontos SiO2 tartalomra következtetni. Figyelembe kell venni, hogy a HF hatására más anyagok is eltávozhatnak a mintából.

GÁZFEJLŐDÉSSEL JÁRÓ REAKCIÓK Szerves anyagok fehérjetartalmának meghatározása (Kjeldahl) A -3 oxidációs állapotú N-vegyületek N-tartalma cc. Kénsavval főzve (NH4)2SO4-tá alakíthatók, szerves anyag tartalma pedig CO2-dá és vízzé oxidálódik. Majd (NH4)2SO4 + 2OH- = 2NH3↑ + SO42- + 2H2O Az NH3-t ismert mennyiségű HCl-ba desztilláljuk és a sósav felesleget lúg mérőoldattal visszamérjük. A N-tartalom 6,25-tel szorozva a fehérjetartalmat adja meg. Automata mérőberendezéseket fejlesztettek ki.

ZÓNAOLVASZTÁS Nyomnyi mennyiségű szennyezők dúsítása az analitikaí meghatározásukhoz (pl. félvezetőipar) Az elemzendő fémrudat indukciós tekercsen tolják keresztül, ahol az indukciós hatás éri, ott felmelegszik és megolvad. Az olvadékban a szennyezők a diffúziós sebességüknek megfelelően mozognak. Az olvadékból lehűléskor előbb a szennyezők válnak ki. Ha az áttolás sebessége kisebb, mint a diffúzió sebessége, akkor a szennyező az előtolás irányába diffundál és feldúsul. Végül a rúd végén gyűlik össze az összes szennyező elem feldúsulva. Levágják és elemzik.

EXTRAKCIÓ Folyadék-szilárd extrakció Pl. hatóanyag kinyerése szilárd halmazállapotú mintából szelektív/specifikus kioldással Rázótölcsér Soxhlet-extraktor Schulek-extraktor

A folyadék-folyadék extrakció Vízben valamint vízzel nem elegyedő oldószerben az elválasztandó komponensnek nem azonos az oldékonysága a komponens a két oldószer között megoszlik megoszlási hányados CA0 a komponens koncentrációja a szerves fázisban CA a komponens koncentrációja a vizes fázisban Pl. 8-hidroxi-kinolin esete Megoszlási hányadosának értéke függ a pH-tól!!!

EXTRAKCIÓ Folyadék-folyadék extrakció Semleges fémkomplexe formájában sok fémion extrahálható át vizes fázisból apoláris szerves oldószerbe Egyszerűsítések és elhanyagolások: [MYn]v≈ 0 a komplex vízben gyakorlatilag nem oldódik N darab Y koordinatíve telíti a komplexet Az Mn+ fémion a vizes fázisban van csak jelen

EXTRAKCIÓ A megoszlási hányados függ a vizes oldat pH-jától: minél stabilisabb az MYn komplex annál savasabb pH-n extrahálható át kvantitatívan a szerves fázisba.

SZINERGIZMUS, ANTAGONIZMUS Szinergizmus: két hatás eredője nagyobb, mint a hatások egyszerű összegződése Jelentősége az extrakcióban: A semleges telített koordinációs szférájú [MII(oxinát)2S2] komplex jobban oldódik a szerves oldószerben, mint az MII(oxinát)2(H2O)2 telítetlen koordinációs szférájú komplex. Antagonizmus ennek az ellentéte.

A folyadék-folyadék extrakció a gramm anyagot v1 cm3 vízből v2 cm3 szerves oldószerrel extrahálva, a vízben viszamaradó x gramm anyag tömege ; Minél nagyobb D és v2 ill. minél kisebb v1, annál hatékonyabb az extrakció Ha a műveletet n-szer megismételjük a kinyerést javíthatjuk.

Az oldószer extrakció alkalmazásai Fémionok elválasztása komplexképzők segítségével, a semleges (töltés nélküli) komplex a szerves fázisban feldúsítható Extrahálószerek: 8-hidroxi-kinolin, acetilaceton, difenil- tiokarbazon, dimetilditiokarbamát,teonil- trifluor-aceton (TTA), dibutilfoszforsav Oldószerek: CHCl3, CCl4, benzol, toluol Technika: szakaszosan, “kirázás” elválasztótölcsérben