1. A mérési adatok kezelése

Slides:



Advertisements
Hasonló előadás
Nevezetes eloszlások, normál eloszlás
Advertisements

A mérés eredménye és a mérési hibák
I. előadás.
II. előadás.
BECSLÉS A sokasági átlag becslése
Kvantitatív Módszerek
Kvantitatív módszerek
ALKALMAZOTT KÉMIA Értékes jegyek használata a műszaki számításokban
Mintavételi hiba, hibaszámítás
 A monitoring célja az, hogy megalapozza a vízstátus egységes és átfogó felülvizsgálatát minden egyes vízgyűjtőkerületben és elősegítse a felszíni víztestek.
Műszeres analitika a 13. C,14. D, K és L osztály részére 2013/2014
Kémiai alapozó labor a 13. H osztály részére 2011/2012
Csoportosítás megadása: Δx – csoport szélesség
Mérési pontosság (hőmérő)
Becsléselméleti ismétlés
STATISZTIKA II. 5. Előadás Dr. Balogh Péter egyetemi adjunktus Gazdaságelemzési és Statisztikai Tanszék.
Statisztika Érettségi feladatok
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Mintavétel Mintavétel célja: következtetést levonni a –sokaságra vonatkozóan Mintavétel.
E L E M Z É S. 1., adatgyűjtés 2., mintavétel (a teljes sokaságot ritkán tudjuk vizsgálni) 3., mintavételi információk alapján megállapítások, következtetések.
Térinformatika (GIS) Házi feladat Keressen hibát a Google Earth vagy Maps adataiban, pl. az objektum jelölése nem esik egybe a műholdképen látható hellyel,
Előadó: Prof. Dr. Besenyei Lajos
III. előadás.
A középérték mérőszámai
Regresszióanalízis 10. gyakorlat.
Kvantitatív módszerek 7. Becslés Dr. Kövesi János.
KÉT FÜGGETLEN, ILL. KÉT ÖSSZETARTOZÓ CSOPORT ÖSZEHASONLÍTÁSA
ÖSSZEFOGLALÓ ELŐADÁS Dr Füst György.
Statisztika II. III. Dr. Szalka Éva, Ph.D..
Készítette: Kosztyán Zsolt Tibor
Alapfogalmak Alapsokaság, valamilyen véletlen tömegjelenség.
Adatmodellek A modellezés statisztikai alapjai. Statisztikai modell??? cél: feltárni, hogy bizonyos jelenségek között létezik-e az általunk feltételezett.
A statisztikai próba 1. A munka-hipotézisek (Ha) nem igazolhatók közvetlen úton Ellenhipotézis, null hipotézis felállítása (H0): μ1= μ2, vagy μ1- μ2=0.
Nominális adat Módusz vagy sűrűsödési középpont Jele: Mo
A normális eloszlás mint modell
Készítette: Horváth Zoltán (2012)
Kvantitatív Módszerek
Kvantitatív módszerek
Idősor elemzés Idősor : időben ekvidisztáns elemekből álló sorozat
Mintavételi hiba, hibaszámítás
Valószínűségszámítás
Mintavételi hiba, hibaszámítás
Gazdaságstatisztika 16. előadás Hipotézisvizsgálatok Alapfogalamak
Méréstechnika.
Hipotézis vizsgálat (2)
Alapsokaság (populáció)
Várhatóértékre vonatkozó próbák
Alapfogalmak.
Lineáris regresszió.
Adatleírás.
© Farkas György : Méréstechnika
© Farkas György : Méréstechnika
Hipotézisvizsgálat v az adatforrás működési “mechanizmusát” egy véletlen eloszlás jellemzi v az adatok ismeretében megfogalmazódnak bizonyos hipotézisek.
I. előadás.
Dr. Takács Attila – BME Geotechnikai Tanszék
Minőségbiztosítás 11. előadás
Bevezetés a méréskiértékelésbe (BMETE80ME19) 2014/
Valószínűségszámítás II.
Bevezetés a méréskiértékelésbe (BMETE80ME19) 2014/
Bevezetés, tippek Ea-gyak kapcsolata Statisztika II -más tárgyak kapcsolata Hogyan tanulj? Interaktív órák, kérdezz, ha valami nem világos! tananyag =előadások.
Kiváltott agyi jelek informatikai feldolgozása 2016
II. előadás.
Becsléselmélet - Konzultáció
Nemparaméteres próbák
I. Előadás bgk. uni-obuda
Kockázat és megbízhatóság
Adatfeldolgozási ismeretek környezetvédelmi-mérés technikusok számára
Mérések adatfeldolgozási gyakorlata vegyész technikusok számára
2. A Student-eloszlás Kemometria 2016/ A Student-eloszlás
Mérések adatfeldolgozási gyakorlata vegyész technikusok számára
1.3. Hipotézisvizsgálat, statisztikai próbák
Előadás másolata:

1. A mérési adatok kezelése http://tp1957.atw.hu/an_01.ppt Analitika 13. C, 13. H osztály és 1219/6 modul tanfolyam részére 2010/2011 1. A mérési adatok kezelése http://tp1957.atw.hu/an_01.ppt 13. C 13. H rész neve cím tartalom bevezetés tananyag osztály-lap ismétlés függelék szakirodalom össz. oldalszám 1 - 10 2 17

Tartalom A mérési hiba A várható érték és a szórás Párhuzamos mérési adatok értékelése A relatív hiba Ismétlő kérdések, gyakorlás Függelék Szakirodalom

1.1 A mérési hiba „Egy mérés nem mérés” – hallottuk már sokszor. Miért? A valódi értéket abszolút pontosan nem tudjuk megmérni. A méréssel csak közelítjük azt. Több mérést végezve, az átlag – reményeink szerint – a valódi értéket egyre jobban közelíti. Egy mérés esetén, ha valami hibát követünk el, nem fogjuk észrevenni. A párhuzamos mérések átlaga, a várható érték, a valódi érték becslése. A várható értéket rendszeres és véletlen hibák terhelhetik. Rendszeres hiba lehet pl. hibás leolvasás (parallaxis). Kétféle létezik: fix és arányos. A véletlen hibák átlagértéke a párhuzamos mérések számának növelésével csökken.

1.1 Rendszeres és véletlen hiba jel Rendszeres hiba Valódi érték Véletlen hiba Várható érték x1 xi xn Egymás utáni mintavételek

1.1 Rendszeres és véletlen hiba 10 8 5 7 6 2 3 4 1 9

1.1 A várható érték változása a mérések számával Mért érték Várható érték

1.2 A várható érték és a szórás Egy mérési sorozat várható értékét ( ) a mérési sorozat elemeinek számtani közepeként számoljuk: A szórás (σ) a párhuzamos mérési eredmények közötti eltérés jellemzésére szolgál; a várható értékek körüli mérési eredmények szoros vagy laza „csoportosulását” jellemzi. Gyakorlatban a korrigált tapasztalati szórással (s, sd) becsüljük.

1.2 A korrigált tapasztalati szórás A párhuzamos mérési adatok eloszlása igen sok adat esetén közelít a Gauss-eloszláshoz (normális eloszlás): Az „m” valódi érték helyébe a várható értéket ( ), a „σ” szórás helyébe az „s” tapasztalati szórást írhatjuk. A korrigált tapasztalati szórás (s, más néven standard deviáció, sd) számítása:

1.2 A normális (Gauss-féle) eloszlás ±s határok közé esik a mért értékek kb. 2/3-a (68,2%-a) ±2·s határok közé esik a mért értékek 95,5%-a ±3·s határok közé esik a mért értékek 99,7%-a

1.3 Párhuzamos mérési adatok értékelése Az előbbiek alapján belátható, hogy egy méréshez tartozó adatok közül azok, amelyek ±3·s tartományon kívül esnek, durva mérési hibákból erednek, valószínűleg jobb, ha elhagyjuk azokat. Egy mérésre a következő számértékek adódtak: 11,2; 11,3; 11,1; 10,4. Számítsa ki az átlagot, a szórást, ha kell, hagyjon el adatot! = 11,0 s = 0,41. Az utolsó adat gyanúsan messze van az átlagtól. Számítsuk ki az átlagot és a szórást annak elhagyásával! = 11,2 s = 0,10. Az utolsó adat a ±3·s tartományon kívül van, helyes volt az elhagyás.

1.3 Mérési eredmény megadása Az előző mérési adatokból (11,2; 11,3; 11,1; 10,4) az alábbi átlagot és szórást kaptuk: = 11,2 s = 0,10. Az eredmény megbízhatósága mennyi? Attól függ milyen biztonsággal/valószínűséggel szeretnénk, hogy a tényleges érték a megadott tartományba essék. Általában a 95%-os biztonság megfelelő. Végtelen számú adat esetén a) adataink ide esnek: ±2·s b) az átlag ebben a tartományban van: ±2· Az előbbi feladatnál: x = 11,2 ± 0,2 (95%), illetve = 11,2 ± 0,1 Ebből adódik, hogy nincs is értelme több tizedesre megadni, hiszen a mérés pontossága nem indokolja.

1.3 Mérési eredmény megadása Általában nincs sok párhuzamos mérésünk, ilyenkor az előbb megismert számítás nem érvényes. Az ilyen esetekben használható a Student (t) eloszlás (táblázata a függelékben). A táblázatban különböző biztonsági szintek szerepelnek, általában a 95%-os megfelelő. A szabadsági fokok száma sz. fok = n-1. Esetünkben sz. fok = n-1 = 3-1 = 2 A táblázat alapján a 95 %-hoz t = 2,92 tartozik. a) adataink ide esnek: ± t·s azaz ± 2,92·s b) az átlag ebben a tartományban van: ±· Az előbbi feladatnál: Adatok: x = 11,2 ± 0,29 (95%), illetve Átlag: = 11,2 ± 0,17

1.4 A relatív hiba A relatív hiba az abszolút hiba eredményhez viszonyított értéke. Legtöbb esetben ez a fontosabb. A relatív hiba mértékeként a tapasztalati szórásnak (s, sd) az átlaghoz viszonyított %-os értékét használjuk: Az előbbi feladat esetében: = 11,2 s = 0,10 x = 11,2 ± 0,2 (95%). A relatív szórás: rsd = 0,9% Az eredmény tehát: x = 11,2 ± 1,8% (95%-os szinten).

1.5 Ismétlő (összefoglaló) kérdések 1. A hibák milyen fajtáit ismerjük? 2. Mi a várható érték? Hogyan becsüljük? 3. Mit nevezünk rendszeres hibának? Mit jellemez? Milyen fajtái vannak? 4. Mi a véletlen hiba? Mivel becsüljük? 5. Hogyan számítjuk a korrigált szórást? 6. Milyen formában adjuk meg az eredményt? 7. Mi a t-eloszlás? 8. Mi a relatív hiba? Mi a relatív szórás (rsd)?

1.5 Gyakorló feladat Egy mérésre a következő számértékek adódtak: 10,2; 11,6; 11,4; 11,2. Számítsa ki az átlagot, a szórást! = 11,1 s = 0,62 Ha kell, hagyjon el adatot, számoljon újabb átlagot, szórást! = 11,4 s = Adja meg a várható értéket 95 %-os biztonsági szinten! Használja a t-eloszlás táblázatot! n = 3 sz. fok = 2 t = 2,92 = 11,4 ± = 11,4 ± 11,1 0,62 11,4 0,2 0,34 (95 %)

1.6 Függelék – t-eloszlás (Student) táblázata Megbízhatósági szint Sz. fok 0,9 0,95 0,975 0,99 0,995 1 3,078 6,314 12,706 31,821 63,656 2 1,886 2,920 4,303 6,965 9,925 3 1,638 2,353 3,182 4,541 5,841 4 1,533 2,132 2,776 3,747 4,604 5 1,476 2,015 2,571 3,365 4,032 6 1,440 1,943 2,447 3,143 3,707 7 1,415 1,895 2,365 2,998 3,499 8 1,397 1,860 2,306 2,896 3,355 9 1,383 1,833 2,262 2,821 3,250 10 1,372 1,812 2,228 2,764 3,169