1. A mérési adatok kezelése http://tp1957.atw.hu/an_01.ppt Analitika 13. C, 13. H osztály és 1219/6 modul tanfolyam részére 2010/2011 1. A mérési adatok kezelése http://tp1957.atw.hu/an_01.ppt 13. C 13. H rész neve cím tartalom bevezetés tananyag osztály-lap ismétlés függelék szakirodalom össz. oldalszám 1 - 10 2 17
Tartalom A mérési hiba A várható érték és a szórás Párhuzamos mérési adatok értékelése A relatív hiba Ismétlő kérdések, gyakorlás Függelék Szakirodalom
1.1 A mérési hiba „Egy mérés nem mérés” – hallottuk már sokszor. Miért? A valódi értéket abszolút pontosan nem tudjuk megmérni. A méréssel csak közelítjük azt. Több mérést végezve, az átlag – reményeink szerint – a valódi értéket egyre jobban közelíti. Egy mérés esetén, ha valami hibát követünk el, nem fogjuk észrevenni. A párhuzamos mérések átlaga, a várható érték, a valódi érték becslése. A várható értéket rendszeres és véletlen hibák terhelhetik. Rendszeres hiba lehet pl. hibás leolvasás (parallaxis). Kétféle létezik: fix és arányos. A véletlen hibák átlagértéke a párhuzamos mérések számának növelésével csökken.
1.1 Rendszeres és véletlen hiba jel Rendszeres hiba Valódi érték Véletlen hiba Várható érték x1 xi xn Egymás utáni mintavételek
1.1 Rendszeres és véletlen hiba 10 8 5 7 6 2 3 4 1 9
1.1 A várható érték változása a mérések számával Mért érték Várható érték
1.2 A várható érték és a szórás Egy mérési sorozat várható értékét ( ) a mérési sorozat elemeinek számtani közepeként számoljuk: A szórás (σ) a párhuzamos mérési eredmények közötti eltérés jellemzésére szolgál; a várható értékek körüli mérési eredmények szoros vagy laza „csoportosulását” jellemzi. Gyakorlatban a korrigált tapasztalati szórással (s, sd) becsüljük.
1.2 A korrigált tapasztalati szórás A párhuzamos mérési adatok eloszlása igen sok adat esetén közelít a Gauss-eloszláshoz (normális eloszlás): Az „m” valódi érték helyébe a várható értéket ( ), a „σ” szórás helyébe az „s” tapasztalati szórást írhatjuk. A korrigált tapasztalati szórás (s, más néven standard deviáció, sd) számítása:
1.2 A normális (Gauss-féle) eloszlás ±s határok közé esik a mért értékek kb. 2/3-a (68,2%-a) ±2·s határok közé esik a mért értékek 95,5%-a ±3·s határok közé esik a mért értékek 99,7%-a
1.3 Párhuzamos mérési adatok értékelése Az előbbiek alapján belátható, hogy egy méréshez tartozó adatok közül azok, amelyek ±3·s tartományon kívül esnek, durva mérési hibákból erednek, valószínűleg jobb, ha elhagyjuk azokat. Egy mérésre a következő számértékek adódtak: 11,2; 11,3; 11,1; 10,4. Számítsa ki az átlagot, a szórást, ha kell, hagyjon el adatot! = 11,0 s = 0,41. Az utolsó adat gyanúsan messze van az átlagtól. Számítsuk ki az átlagot és a szórást annak elhagyásával! = 11,2 s = 0,10. Az utolsó adat a ±3·s tartományon kívül van, helyes volt az elhagyás.
1.3 Mérési eredmény megadása Az előző mérési adatokból (11,2; 11,3; 11,1; 10,4) az alábbi átlagot és szórást kaptuk: = 11,2 s = 0,10. Az eredmény megbízhatósága mennyi? Attól függ milyen biztonsággal/valószínűséggel szeretnénk, hogy a tényleges érték a megadott tartományba essék. Általában a 95%-os biztonság megfelelő. Végtelen számú adat esetén a) adataink ide esnek: ±2·s b) az átlag ebben a tartományban van: ±2· Az előbbi feladatnál: x = 11,2 ± 0,2 (95%), illetve = 11,2 ± 0,1 Ebből adódik, hogy nincs is értelme több tizedesre megadni, hiszen a mérés pontossága nem indokolja.
1.3 Mérési eredmény megadása Általában nincs sok párhuzamos mérésünk, ilyenkor az előbb megismert számítás nem érvényes. Az ilyen esetekben használható a Student (t) eloszlás (táblázata a függelékben). A táblázatban különböző biztonsági szintek szerepelnek, általában a 95%-os megfelelő. A szabadsági fokok száma sz. fok = n-1. Esetünkben sz. fok = n-1 = 3-1 = 2 A táblázat alapján a 95 %-hoz t = 2,92 tartozik. a) adataink ide esnek: ± t·s azaz ± 2,92·s b) az átlag ebben a tartományban van: ±· Az előbbi feladatnál: Adatok: x = 11,2 ± 0,29 (95%), illetve Átlag: = 11,2 ± 0,17
1.4 A relatív hiba A relatív hiba az abszolút hiba eredményhez viszonyított értéke. Legtöbb esetben ez a fontosabb. A relatív hiba mértékeként a tapasztalati szórásnak (s, sd) az átlaghoz viszonyított %-os értékét használjuk: Az előbbi feladat esetében: = 11,2 s = 0,10 x = 11,2 ± 0,2 (95%). A relatív szórás: rsd = 0,9% Az eredmény tehát: x = 11,2 ± 1,8% (95%-os szinten).
1.5 Ismétlő (összefoglaló) kérdések 1. A hibák milyen fajtáit ismerjük? 2. Mi a várható érték? Hogyan becsüljük? 3. Mit nevezünk rendszeres hibának? Mit jellemez? Milyen fajtái vannak? 4. Mi a véletlen hiba? Mivel becsüljük? 5. Hogyan számítjuk a korrigált szórást? 6. Milyen formában adjuk meg az eredményt? 7. Mi a t-eloszlás? 8. Mi a relatív hiba? Mi a relatív szórás (rsd)?
1.5 Gyakorló feladat Egy mérésre a következő számértékek adódtak: 10,2; 11,6; 11,4; 11,2. Számítsa ki az átlagot, a szórást! = 11,1 s = 0,62 Ha kell, hagyjon el adatot, számoljon újabb átlagot, szórást! = 11,4 s = Adja meg a várható értéket 95 %-os biztonsági szinten! Használja a t-eloszlás táblázatot! n = 3 sz. fok = 2 t = 2,92 = 11,4 ± = 11,4 ± 11,1 0,62 11,4 0,2 0,34 (95 %)
1.6 Függelék – t-eloszlás (Student) táblázata Megbízhatósági szint Sz. fok 0,9 0,95 0,975 0,99 0,995 1 3,078 6,314 12,706 31,821 63,656 2 1,886 2,920 4,303 6,965 9,925 3 1,638 2,353 3,182 4,541 5,841 4 1,533 2,132 2,776 3,747 4,604 5 1,476 2,015 2,571 3,365 4,032 6 1,440 1,943 2,447 3,143 3,707 7 1,415 1,895 2,365 2,998 3,499 8 1,397 1,860 2,306 2,896 3,355 9 1,383 1,833 2,262 2,821 3,250 10 1,372 1,812 2,228 2,764 3,169