Matematika és tapasztalat 2. A véletlentől a statisztikus világig.

Slides:



Advertisements
Hasonló előadás
Érték-e még a család? SzülőSuli 1.
Advertisements

Események formális leírása, műveletek
A bizonytalanság és a kockázat
Valószínűségszámítás
Korfa, egészségi mutatók,…
7. Az idő mérésére használt csillagászati jelenségek
2006. február 17. Valószínűségszámítás és statisztika II. Telefonos feladat Egy kalapban van két korong, az egyiknek mindkét oldala piros, a másiknak.
Matematika a filozófiában
Az egészségügy és az egészség „ügye” „Képes vagy-e EGÉSZ-séget ÉP-íteni?
A fizika világ- és Isten-képe
A VALÓSÁG ILLÚZIÓ.
9. A zónaidő felosztása Földünkön
Szemiot i ka.
Eseményalgebra Eseményalgebra.
3. Két független minta összehasonlítása
Készitette:Bota Tamás Czumbel István
A tudomány természete Társadalomtudomány = Elmélet + kutatásmódszertan + statisztika Paradigma Eredetileg mintapélda (pl igeragozás) Adott tudós közösség.
Készítette: Tóth Enikő 11.A
MI 2003/9 - 1 Alakfelismerés alapproblémája: adott objektumok egy halmaza, továbbá osztályok (kategóriák) egy halmaza. Feladatunk: az objektumokat - valamilyen.
Műveletek logaritmussal
Valószínűségszámítás
Bevezetés a statisztikába
A korlátozott síkbeli háromtestprobléma
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Mintavétel Mintavétel célja: következtetést levonni a –sokaságra vonatkozóan Mintavétel.
Albert Einstein idézetek.
A társadalomtudományi kutatás módszerei
1. A demográfia fogalma, története, tárgykörei és forrásai
ME-ÁJK, Bevezetés az állam és jogtudományokba 1. Előadás vázlata
Vámossy Zoltán 2006 Gonzales-Woods, SzTE (Kató Zoltán) anyagok alapján
Fuzzy rendszerek mérnöki megközelítésben I
Hurrikánok, Tájfunok, Tornádók
Gazdálkodási modul Gazdaságtudományi ismeretek II. Vezetés és kommunikációs ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Evolúciósan stabil stratégiák előadás
Játékelméleti alapfogalmak előadás
1 1 1.
A „hűséges kéz” és az „állhatatos szem” viszonya x A taktilis és a vizuális megismerés összekapcsolhatósága a XVII. században Szerző: Pintér Lilla Témavezető:
Miért hozzuk a döntést, mi a cél?
Kvantitatív módszerek
Többszörös regresszió I. Többszörös lineáris regresszió
ÖSSZEFOGLALÓ ELŐADÁS Dr Füst György.
Többszörös regresszió I. Többszörös lineáris regresszió miért elengedhetetlen a többszörös regressziós számítás? a többszörös regressziós számítások fajtái.
Valószínűségszámítás
1 TARTALOM: 0. Kombinatorika elemei (segédeszközök) 1. Eseményalgebra 2. A valószínűség: a) axiómák és következményeik b) klasszikus (=kombinatorikus)
Az Alakfelismerés és gépi tanulás ELEMEI
Buddhista logika és paradoxonok
Naturalista filozófia Avagy milyen állásponton lehetünk azzal kapcsolatban, hogy hogyan épül fel a világ? Sipos Péter Budapest, 2007 október 10.
A csillagászat keletkezése
Valószínűségszámítás
Gazdaságstatisztika 11. előadás.
Gazdaságstatisztika 10. előadás.
Gazdaságstatisztika 13. előadás.
VALÓSZÍNŰSÉG-SZÁMÍTÁSVALÓSZÍNŰSÉG-SZÁMÍTÁS I. TÖRTÉNETI HÁTTÉR.
Alapfogalmak.
Binomiális eloszlás.
Thomas S. Kuhn: A tudományos forradalmak szerkezete
Hilary Putnam: Time & Phisical Geometry Körtvélyesi László.
5. A racionalitás paradoxonai Bara Zoltán
A valószínűségi magyarázat induktív jellege
VI.1. A Principia jelentősége: a szintetikus elmélet A forradalmiság tartalma A forradalmiság tartalma a szintézis a szintézis a halmozódó tudás szükségszerűen.
Valószínűségszámítás
Newton és gravitációs törvénye
1 „Még korunk szélhámosainak is tudósnak kell magukat színlelni, mert különben senki sem hinne nekik.” C.F. Weizsacker.
Készült a HEFOP P /1.0 projekt keretében
A mozgás egy E irányú egyenletesen gyorsuló mozgás és a B-re merőleges síkban lezajló ciklois mozgás szuperpoziciója. Ennek igazolására először a nagyobb.
Valószínűségszámítás II.
 A matematikai statisztika a természet és társadalom tömeges jelenségeit tanulmányozza.  Azokat a jelenségeket, amelyek egyszerre nagyszámú azonos tipusú.
Algebrai logika Leibniz folytatói a 18. században: Lambert, Segner és mások. 19. sz., Nagy-Britannia: Aritmetikai és szimbolikus algebra. Szimbolikus algebra:
Spinóza ( ) Descartes-nál megoldatlan kérdés: Hogyan lehet hatással egymásra a test és a lélek (nála ugyanis ez két különböző szubsztancia). Spinóza.
A fizika mint természettudomány
Spinóza ( ) Descartes-nál megoldatlan kérdés: Hogyan lehet hatással egymásra a test és a lélek (nála ugyanis ez két különböző szubsztancia). Spinóza.
Előadás másolata:

Matematika és tapasztalat 2. A véletlentől a statisztikus világig

A matematika forradalma A tizenhetedik század során alapvető átalakuláson megy át a matematika –növekvő igények, egyre több diák –algebra terjedése –a hivatásos számolómesterek mellett megjelennek a pénzügyileg nem érdekelt „műkedvelők” –jellemző a különbség pl. Faulhaber és Descartes között

„Csoda” helyett rendszer Tipikus szemlélet: matematikai gyönyörök kertjének még le nem szakított kis virágocskái E helyett Descartes: pár szabály, feladatok tipizálása, a matematikai tudás, mint a bizonyossághoz vezető út.

A matematika mint hatalom A tudományos diskurzusban a matematika, az egzaktság retorikai előnyt is jelent –Newton: prizmakísérletiben fokperc pontossággal adja meg a prizmák törési szögeit, holott a kor prizmái nem mérhetők ilyen pontossággal, sőt, a Nap mozgása nagyságrendekkel nagyobb pontatlanság forrása Mindmáig „hat” ez a hozzáállás reklámokban, ismeretterjesztő munkákban, stb.

A statisztikus-valószínűségi gondolkodási stílus megjelenése Ma egészen természetes: reklámok, hírek, stb.  matematikai kultúránk alapvető része régen, pl. egy görög számára, teljesen ismeretlenek voltak az erre vonatkozó fogalmak egyfajta „gondolkodási stílus” (Ian Hacking): az újkorban jelent meg  új fogalmi lehetőségek „valószínűség” fogalma: kb as évek statisztikus gondolkodás: 19. sz. első fele: alapos forradalom, átalakítva a 20. sz-i gondolkodást

A véletlen matematikájának születése Első kérdések (16. sz.): szerencsejátékok (Cardano) 1654: De Méré lovag kérdése Blaise Pascalhoz: osztozkodási probléma (megszakított játék) 7 levél Pascal és Pierre Fermat között: megteremtik a valószínűségszámítás klasszikus alapjait klasszikus megközelítés: ha egy játéknak m egyenlően valószínű kimenete van, és ebből n nyerő, akkor a nyerés valószínűsége n / m ezt aztán „tapasztalatilag” is igazolják: egy játék sokszori megismétlése azonos körülmények között

„Vizsgáljuk hát meg ezt a kérdést, és állapítsuk meg: »Vagy van Isten, vagy nincs.«… E végtelen távolság legvégén szerencsejáték folyik, s az eredmény fej vagy írás lesz. Melyikre fogad maga? … Mérlegeljük, mit nyerhet vagy veszíthet, ha fejre, vagyis arra fogad, hogy van Isten. Értékeljük ezt a két eshetőséget: ha nyer, mindent megnyer; ha veszít, semmit sem veszít… Minthogy egyforma a nyerés és vesztés esélye, még akkor is fogadhatna, ha csupán két életet nyerhetne egy ellen; ha pedig három életet nyerhetne, akkor már feltétlenül bele kellene mennie a játékba (hiszen úgyis kényszerítve van rá)… Ám itt az örök élet és az örök boldogság a tét… Így ez már nem is fogadás: ahol a végtelen forog kockán, és nem áll szemben végtelen számú vesztési esély a nyerési eséllyel, nincs helye a mérlegelésnek, mindent fel kell tennünk.” (Pascal: Gondolatok, 233.§)

Pascal valószínűségi istenérve Mire érdemes fogadni: van Isten vagy nincs? 1. fogadás: van 1/a: ha tényleg van, akkor végtelen a nyereség (üdv.) 1/b: ha nincs, akkor véges veszteség: tévedésben élek 2. fogadás: nincs 2/a: ha tényleg nincs, akkor véges nyereség: élvhajhászat 2/b: ha van, akkor végtelen veszteség: kárhozat Σ : végtelen nyereség / véges veszteség a véges nyereség / végtelen veszteséggel szemben  a hülyének is megéri Isten létére fogadni

A val.szám. korai története a Pascal-Fermat levelezés híre gyorsan terjed Christiaan Huygens, 1657: De Ratiociniis in Aleae Ludo Az alapok + 14 probléma megoldással (5 m. nélkül)  kb. 50 évre minden hasonló témájú munka alapjául szolgál Pepys Newtonhoz november 22 (29 évesen megtanul szorozni) –„A — 6 kockája van egy dobozban, amellyel egy hatost dob. –B — egy másik dobozban 12 kockája van, amellyel 2 hatost dob –C — egy másik dobozban 18 kockája van, amellyel 3 hatost dob –K[érdés]: egyforma szerencsét feltételezve B-nek és C-nek ugyanolyan könnyű dolga van-e mint A-nak?”[i][i] Newton elmagyarázta miért A-nak a legjobbak az esélyei és megadta Pepysnek egy 1000 fontos fogadás esetén a pontosan várható nyereményeket fontban, shilligben és pennyben.

Politikai és orvosi aritmetika egy másik vonal: halálozási adatok Jacob Bernoulli, 1713 (1690): Ars Conjectandi szerencsejátékok, halálozási jegyzékek + permutáció, kombináció, binomiális tétel, nagy számok törvénye Centralizált fellépés járványok ellen: ismertetők, táblázatok, karantének, pestisdoktorok –1662 John Graunt: Natural and Political Observations made upon the Bills of Mortality. London lakossága, katonaképes férfiak száma, legveszélyesebb betegségek, gyermekhalálozás.  fél évszázados adatsorok elrendezése, általános tanulságok  biztosítási matematika alapjai, adózás, statisztika, stb. –1720 James Jurin. Himlőoltás (himlős sebből emberi sebbe kenet). A Philosophical Transactions- ben és egyéb helyeken hirdetések – adatok, ki mit tud. Európaszerte sokan válaszolnak: milyen veszélyes az oltás 1: 90 vs.1: 7,5 –Később adótáblázatok, születési adatok használata is. Orvosoknál levelezési láncok –orvosi és betegadatok. Kórházi szülés (fogó), bábaiskolák

A valószinűségi érvelés 1710 John Arbuthnot „Argument for Divine Providence” –Londonban az ezt megelőző 82 évben mindig több fiú született, mint lány. –Egyenlő esély feltételezése esetén ennek a valószínűsége 1/(2^82) –Ez olyan kicsi szám, hogy minden bizonnyal a gondviselés a felelős ez a reductio ad absurdum érvelési forma elterjed

Georges-Louis de Buffon Hogy a hat bolygó mind egy irányban kering: 1/2 6, vagyis 1/64. Ez valószinűtlen, így valószínű, hogy Buffon üstököselmélete helyes (ez szakította ki a napból a bolygókat) Matematika bizonyosság (nincs bizonytalanság) Morális bizonyosság (1/ a tévedés val.) Fizikai bizonyosság: ki kell számolni!! –pl. mi az esélye, hogy egy 56 éves férfi meghal a következő 24 órában?

A napfelkelte valószinűsége 1777 Essai d’arithmétique morale –Gondolatkísérlet – felnőtt minden korábbi érzékelés nélkül –Meglátja a napot, az azonban eltűnik –Milyen biztos abban, hogy újra fogja látni? ½ –Ahogyan telnek a napok egyre több adata van, egyre bizonyosabb, hogy újra fel fog kelni a nap –6000 év alatt szer (n) látta –a valószínűség, hogy újra látja: 2 n-1 az 1-hez.

A véletlen a 18. században Csak egy puszta szó, de semmit sem jelent De Moivre, 1738 (1711, 1756): Az esélyek tana „A véletlen szónak esztétikai értéke van, de különben minden jelentést nélkülöz. A létezés semmilyen módozatával nem áll kapcsolatban, sem magával a létezéssel, sem pedig a nemlétezéssel; sem meghatározni, sem megérteni nem lehet, és nem lehetséges a rá vonatkozó kijelentéseket sem igazolni, sem cáfolni, kivéve ezt: ‘Ez nem több, mint egy puszta szó.’” David Hume, 1739: Értekezés az emberi természetről „Általánosan elfogadott, hogy semmi sem létezik ok nélkül, és a véletlen, ha szigorúan megvizsgáljuk, egy pusztán negatív szó, és semmi olyan valódi erőt nem jelent, amely bárhol is létezne a természetben.”  a determinisztikus világban nincs helye

A statisztikai forradalom P.-S. Laplace, 1814: Filozófiai értekezés a valószínűségről „Minden esemény, még ha olyan jelentéktelen is, hogy látszólag nem követi a természet törvényeit, valójában ugyanolyan pontossággal következik belőlük, mint a nap keringései.”  nála az észlelési hibák kezelésére kell a val.szám.: a dolog a tudatlanságunk mértékével áll kapcsolatban C.S. Peirce, 1893: „Válasz a szükségszerűség híveinek” „A véletlen beszivárog az érzékelés minden útján: minden dolgok közül ez a legszembeötlőbb. A legnyilvánvalóbb szellemi meglátásunk az, hogy a véletlen abszolút. Hogy létező, élő és tudatos – ezt még a racionalitás unalmas önképének is aligha van mersze tagadni.” Hát elég sok minden történt a közben eltelt időben...

„Statisztika” a szó eredeti jelentése: olyan adatgyűjtés, amely az állam politikai és gazdasági érdekeit szolgálja Poroszország, 18. sz.: központi statisztikai hivatal  korábbi népszámlálások: gyarmati kolóniák (16. sz-tól) Félig öncélú adatgyűjtés (Leibniz): emberek száma nem szerint, társadalmi rang szerint, fegyverviselésre képes férfiak száma, házasságképes nők száma, népességsűrűség és - eloszlás, gyermekhalandóság, várható élettartam, betegségek eloszlása, halálozási okok, stb. (56 kategória)  átfogó és részletes népszámlálások (egyre több kategória) 1733: az adatokat titkosítják (az ellenségnek segítség) század második fele: a statisztika amatőr hobbi lesz, majd sorra jönnek létre a helyi statisztikai intézetek

„Statisztikus” törvények Kell hozzá rengeteg adat: Napóleon államszervezete iszonytató mennyiségűt produkál Kell hozzá a társadalmi törvény fogalma: a francia Felvilágosodás racionalista hagyományában  a természetet a természet törvényei, az emberi természetet saját törvényei igazgatják Kell hozzá egy induktivista szemlélet: adatokból általánosítás programja  „törvények” + a matematika alkalmazása: Laplace és Gauss: a hibák „normál-eloszlást” mutatnak  sok társadalmi adat is  az „emberi természet” fogalmát felváltja a „normális ember” fogalma

Néhány alkalmazás Orvostudomány: statisztikus betegség- törvények Egy brit bizottság, 1825: „Megállapítható a betegség mennyisége, melyet egy átlagos egyén évente átél 20 és 70 éves kora között.” Empirikus szociológia születése Pl. öngyilkossági adatok (orvosok gyűjtik, mert az őrültség egy fajtája)  az életszínvonal számszerű indikátora Bűnüldözés: a bűnözési statisztikák meglepő állandósága  a törvényalkotásnál is figyelembe kell venni a devianciát Bíróságok összetétele Condorcet, Laplace: a bírósági tévedés valószínűségének a priori meghatározása (pl. 7-5 arányú döntés: 1/4 a tévedés esélye)  statisztikai adatok: biztosabbá teszik a képet

„Számokba fojtva” Charles Babbage, 1832: „ Pillanatnyilag a legszükségesebb, kollektív erőfeszítéséket igénylő tudomány, amely a legtöbb hasznot fogja hozni… az, amelyet úgy kellene nevezni, hogy ‘A természet és a művészet állandói’. Ennek kell tartalmaznia mindazokat a tényeket, melyek számokkal kifejezhetők.” Babbage 19 állandó-kategóriája: Naprendszer állandói; atomsúlyok; fémek adatai; optikai tulajdonságok; állatfajok számai; emlősök adatai; emberek adatai; emberek munkavégző- képessége; növények; földrajzi eloszlások; légköri jelenségek; anyagok; sebességek (pl. madarak, nyíl, fény); földrajzi adatok; népességek; épületek; súlyok és mértékek; betűk előfordulásai különböző nyelvekben; könyvtári könyvek, egyetemi hallgatók, intézeti dolgozók, stb. száma

A mérték és mérés világa Az egész világ számokban kifejezhető Figyelem: ez nagyon messze van akár a 17. sz. geometriai felfogásától!!!  mérés, mérték alapvető 18. sz.: rengeteg különböző mértékrendszer (pl. Franciaország: kb. 800, összesen kb variánssal (?)) 1790: Súly- és Mértékügyi Bizottság (Lagrange, stb.)  SI a fizikai világ számszerű viszonyai matematikai viszonyokkal visszaadhatók, pl: (testek, könnyebb, additivitás — valós számok, kisebb, összeadás)  a kettő között  homomorfizmus

A statisztikus perspektíva A számokba fojtott világ statisztikailag értelmezhető: nemcsak szociológia, kriminológia, stb, hanem statisztikus fizika: Maxwell, Boltzmann az „atomok társadalma” segítségével újraértelmezi a klasszikus fizikai fogalmakat evolúcióelmélet stb… 20. sz.: kvantumfizika  a világ eleve nem determinisztikus

Az ember mérése Szemben a szimmetriaviszonyok, stb. mérésével (ld. Dürer) – a tizenkilencedik század az emberi teljesítményt (is)kezdte kvantifikálni –gyárak (munkaidő, teljesítmény, táplálék) –megfigyelések pontossága (obszervatóriumok, stb.)

Reakcióidő-mérés 1796 Newill Maskellyne királyi csillagász kirúgja segédét, mert 800 msec-es késéssel jelezte a csillagok áthaladását a greenwichi obszervatórium felett –„az áthaladás megítélésén múlt a greenwichi óra működése, az óra működésétől függött a hosszúsági fokok beállítása, s a hosszúsági fokoktól függött a Brit birodalom”

Bessel, 1820 Csillagászok leolvasási idejeinek szisztematikus összevetése: szisztematikus eltérések –személyi egyenlet: A-S=0,202 (Algerander átlagosan 0,202 mp-vel később látta az áthaladást, mint Strube) –De mi volt a valódi áthaladás? Nincs „biztos pont”

A kronoszkóp / kronográf Mesterséges „időgenerálás” csillagáthaladások mesterséges modellhelyzetei de ki kell zárni az egyéb hatásokat (ezek növelik a reakcióidőt és a készülék maga is hangot ad…) személy-egyenlet, hangszigetelő fülke – a kísérleti pszichofizika megszületik

Irodalom Ian Hacking : The Emergence of Probability. Ian Hacking : The Taming of Chance. Loveland, J. Buffon, the Certainty of Sunrise, and the Probabilistic Reductio ad Absurdum. Arch. Hist. Exact Sci (55) Pléh Csaba. A lélektan története Osiris