Mit jelent az, hogy NMR spektroszkópia ?

Slides:



Advertisements
Hasonló előadás
Készítette: Bráz Viktória
Advertisements

MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging.
Fémkomplexek lumineszcenciája
Elektromos alapismeretek
Mit jelent az, hogy NMR spektroszkópia ?
1. Anyagvizsgálat Feladat Tervezés számára információt nyújtani.
Töltött részecske sugárzások spektroszkópiai alkalmazásai
3. A HIDROGÉNATOM SZERKEZETE
Borán es foszfin molekulák kölcsönhatása oldatfázisban
Mágneses módszerek a műszeres analitikában
Spektroszkópiáról általában és a statisztikus termodinamika alapjai
Rádióhullámok, mágnesek, molekulák: az NMR alkalmazásai
Hősugárzás Radványi Mihály.
Vámossy Zoltán 2006 Gonzales-Woods, SzTE (Kató Zoltán) anyagok alapján
Dr. Csurgai József Sugárzástan 1. Dr. Csurgai József
Ezt a frekvenciát elektron plazmafrekvenciának nevezzük.
MÁGNESES MAGREZONANCIA A KÉMIÁBAN, GYÓGYSZERÉSZETBEN, ORVOSTUDOMÁNYBAN 1) A jelenség 2) Nuclear Magnetic Resonance (NMR) 3) Magnetic Resonance Imaging.
Elektromágneses színkép
Szervetlen kémia Hidrogén
1 11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI A maghéj modell.
Szimmetriaelemek és szimmetriaműveletek (ismétlés)
2. A HIDROGÉNATOM SZERKEZETE
11. AZ ATOMMAG ELEKTRONÁLLAPOTAI
Kémiai anyagszerkezettan
11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI
3. A HIDROGÉNATOM SZERKEZETE A hidrogénatom Schrödinger-egyenlete.
NMR jel észlelése A B0 tér bekapcsolása (illetve a minta mágneses térbe való helyezése) még nem eredményez NMR jelet, csak a nívók (egyébként nem észlelhető)
Mit jelent az, hogy NMR spektroszkópia ?
Lézerspektroszkópia Előadók: Kubinyi Miklós Grofcsik András
1 6. A MOLEKULÁK FORGÁSI ÁLLAPOTAI A forgó molekula Schrödinger-egyenlete.
11 6. A MOLEKULÁK FORGÁSI ÁLLAPOTAI A forgó molekula Schrödinger-egyenlete.
Kémiai anyagszerkezettan Bevezetés
11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI A maghéj modell.
1 11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI A maghéj modell.
Kómár Péter, Szécsényi István
6. A MOLEKULÁK FORGÓMOZGÁSA
11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI
Kubinyi Miklós ) Lézerspektroszkópia Kubinyi Miklós )
3. A HIDROGÉNATOM SZERKEZETE
Nukleáris módszerek a kémiai és anyagszerkezet vizsgálatokban
TPH (Összes ásványi szénhidrogén) Fogalmak Vizsgálati lehetőségek
Kémiai reakciók.
Elektrongerjesztési (UV-látható) spektroszkópia
Az elektronszerkezet 7.Osztály Tk oldal.
Oxigéntartalmú szénvegyületek csoportosítása
Spektrofotometria november 13..
A betatron Az időben változó mágneses tér zárt elektromos erővonalakat hoz létre. A térben indukált feszültség egy ott levő töltött részecskét (pl. elektront)
UV -látható spektroszkópia.
A kvantum rendszer.
Elektromágneses rezgések és hullámok
Fémkomplexek lumineszcenciája
Az atommag alapvető tulajdonságai
A fény és az anyag kölcsönhatása
Spektroszkópia Analitikai kémiai vizsgálatok célja: a vizsgálati
Máté: Orvosi képfeldolgozás1. előadás1 A leképezés tárgya Leképezés Képfeldolgozás Felismerés Leletezés Diagnosztizálás Terápia Orvosi képfeldolgozás Minden.
Mágneses rezonancia módszerek: spinek tánca mágneses mezőben
Kémiai anyagszerkezettan Grofcsik András tel: Előadó: Kubinyi Miklós tel: Kállay Mihály tel:
Kémiai anyagszerkezettan 1 Előadó: Kubinyi Miklós Tel:
Máté: Orvosi képfeldolgozás11. előadás1 Mágneses rezonancia (MR, MRI, NMR) Bloch, Purcell 1946, Nobel díj Mágneses momentum + - spin (kvantum mechanika)
1 11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI A maghéj modell.
Mit jelent az, hogy NMR spektroszkópia ? Mit jelent az, hogy NMR ? N nuclear M magnetic R resonance Mit jelent az, hogy spektroszkópia ?
12. MÁGNESES MAGREZONANCIA
Mit jelent az, hogy NMR spektroszkópia ?
Analitikai Kémiai Rendszer
Mit jelent az, hogy NMR spektroszkópia ?
DEe >> DEvib >> DErot
11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI
Optikai mérések műszeres analitikusok számára
RASZTERES ADATFORRÁSOK A távérzékelés alapjai
A folyadékállapot.
Előadás másolata:

Mit jelent az, hogy NMR spektroszkópia ? N uclear M magnetic R resonance Mit jelent az, hogy spektroszkópia ? http://tonga.usp.edu/gmoyna Spektrum = színkép ? Az anyag (minta, vizsgált molekula) és az elektromágneses sugárzás kölcsönhatását vizsgáljuk. Kölcsönhatás leggyakoribb formája : abszorpció Az elektromágneses sugárzás tipusai : g-sugár Röntgen UV VIS IR m-hullám radio 10-10 10-8 10-6 10-4 10-2 100 102 hullámhossz (l, cm)

A molekulák (elemi részecskék) nem vehetnek fel tetszőleges energiaállapotot. (Kvantumelmélet) Magasabb frekvencia – nagyobb energia Hullámhossz-energia : fordított arányú összefüggés. A hullámhossz/frekvencia függvényében minőségileg más –más tipusú kölcsönhatások jönnek létre, más jellegű belső energiák változnak meg. : „Kvantumlétra.” g/Röntgen-sugárzás – belső héj elektronjai, magenergiák UV/VIS – vegyérték(kötő)elektronok IR – rezgési energiák(kötéshossz/kötésszög) NMR – Magspin energiák DE = h n E l

Az NMR spektroszkópia jelentősége Szerkezeti kémia Szerves kémia: Minőségi analízis. Új vegyületek szerkezetvizsgálata. Enantiomer tisztaság vizsgálata. Természetes vegyületek szerkezetvizsgálata.. Metabolitok vizsgálata Fizikai-kémiai vizsgálatok Gazda-vendég kölcsönhatások. Reakciókinetika Makromolekulák háromdimenziós szerkezete Peptidek, fehérjék, enzimek DNS/RNS, DNS/RNS komplexek Poliszaharidok Gyógyszerkutatás Receptor kötődési vizsgálatok Orvostudomány: diagnosztika Magnetic Resonance Imaging (MRI)

Elméleti alapok m = I, (I - 1), (I - 2), … , -I Az atommagok egy makroszkópikusan nehezen értelmezhető sajátsággal, un. spinnel rendelkeznek Az NMR spektroszkópia számára csak azok az atommagok érdekesek, ahol a spinkvantumszám (I)  0 Az atommagok csoportositása : Páros tömegszám és rendszám  I = 0 (12C, 16O) Páros tömegszám és páratlan rendszám  I = egész szám (14N, 2H, 10B) Páratlan tömegszám  I = 1/2, 3/2, 5/2…stb (1H, 13C, 15N, 31P) Másik lehetséges csoportositás NMR szempontból: természetes előfordulás szerint Egy mag lehetséges spinállapotai (m) m neve: mágneses kvantumszám m = I, (I - 1), (I - 2), … , -I

A legfontosabb (és általunk tárgyalt ) magok (1H, 13C, 15N, 31P) esetén I = 1/2, tehát Ennek eredményeképpen csak két energiaszintet kell figyelembe vennünk Az atommagok további fontos paramétere az un. mágneses momentum (m), amelyet kifejezhetünk: Ez egy vektormennyiség, amely megadja a mag által reprezentált „elemi mágnes” irányát és nagyságát, ahol h a Planck konstans g a giromágneses állandó, amely függ a mag anyagi minőségétől. Minden egyes mag mágneses momentuma (és természetesen giromágneses állandója) különböző. m = 1/2, -1/2 m = g I h / 2p

DE = g h Bo / 2p Na / Nb = e DE / RT Egy spin energiája egy polarizáló külső mágneses térben ( Bo, ) a tér nagyságától és a mágneses momentumtól (m:) függ. A külső Bo tér bekapcsolásakor a spinek energiája felhasad. Két energiaszint lép fel, a külső térrel paralell és antiparallel állapot. Az energia a két vektor szorzataként írható le a követ- kezőképpen Az energiakülönbség a két nívó, a és b, között Az energiakülönbség a polarizáló Bo, tértől függ. A nivók. benépesítettsége DE függvénye, amit egy Boltzmann tipusú eloszlásból kiszámíthatunk A DE 1H esetén 400 MHz-en (Bo = 9.4 T) 4 x 10-5 Kcal / mol. E = - m . Bo Bo m Bo m Ea = - g h Bo / 4p Eb = g h Bo / 4p DE = g h Bo / 2p Na / Nb = e DE / RT Az Na / Nb arány csak 1.000064.

g13C = 6,728 rad / G g1H = 26,753 rad / G no = g Bo / 2p NMR mérés érzékenysége Érzékenységet befolyásoló tényezők Giromágneses tényezőrg3.(m, Na / Nb ,a tekercs mágneses fluxusa) Természetes előfordulás 13C mérés 64-szer érzéketlenebb a giromágneses tényező értéke miatt Amennyiben a temészetes előfordulást 13C (~1%) is számbavesszük, 6400 –szer kevésbé érzékeny A rezonancia-frekvencia az energiakülönbség értékéből számítható: DE = h no DE = g h Bo / 2p 1H magokra a jelenleg ismeretes mágnesek (2.35 – 22.31T) esetén a rezonanciafrekvencia 100 és 950 MHz között van g13C = 6,728 rad / G g1H = 26,753 rad / G no = g Bo / 2p

Néhány fontos NMR- aktív mag Név Spin Természetes előfordulás (%) Relatív érzékenység Larmor frekvencia 11.7 T térerő esetén (MHz) 1H 1/2 99.98 1 500.13 13C 1.07 9.65E-3 125.75 2H 0.011 1.59E-2 76.77 31P 100 6.65E-2 161.97 23Na 3/2 9.27E-2 132.29

no értékéből adható meg a precesszó sebessége, az un no értékéből adható meg a precesszó sebessége, az un. Larmor frekvencia wo, i wo = 2pno  wo = g Bo (radian) A precesszió magyarázata : minden mag (mágneses és nem-mágneses) rendelkezik szögmomentummal ((L) A magokat mint kis mágneseket képzeljük el, melyek tengelyük körül forognak A spinekre két erő hat a polarizáló mágneses tér bekapcsolása után: Bo, kényszeríti a térirányba történő beállást igyekeznek megtartani a szögmomentumot m L wo m Bo L

Eredő mágnesezettség A mintát alkotó elemi mágneses momentumok a B0 bekapcsolása után rendezettséget mutatnak. Ennek eredménye az eredő mágnesezettség megjelenése, melyet egy koordinátarendszerben ábrázolva érthetünk meg Ha felbontjuk a m vektort a z and <xy>,komponensekre z x A mágneses térrel parallel és antiparallel beállású vektorok aránya Na / Nb. y Bo z z z = Mo x y y Bo = “0” x Az eredő mágnesezettség a Bo irányába mutat, ezt hasznosítjuk az NMR -benl

A mágnesezettség Mxy észlelése xy síkban A B1 oszcilláló mágneses tér kikapcsolása után az Mxy vektor vissza fog térni a z tengely irányába ( egyensúlyi Mo,) és visszaáll az eredeti spineloszlás (Na / Nb ) relaxáció Mxy vektor visszatérése z tengely irányába: precesszió az <xy> sikban Az Mxy vektor oszcillációja egy változó mágneses teret jelent, amely egy tekercsben áramot indukál: z z Mo egyensúly. x x wo Mxy y y z x Bo wo Mxy y  NMR jel Vevőtekercs (x)

NMR jel észlelése A B0 tér bekapcsolása (illetve a minta mágneses térbe való helyezése) még nem eredményez NMR jelet, csak a nívók (egyébként nem észlelhető) felhasadását A mintának energiát kell abszorbeálni. Az energiát egy oszcilláló elektromágneses sugárzással tudjuk biztosítani. ( B1 tér bekapcsolása) z B1 = C * cos (wot) Mo x B1 Bo y i adótekercs (y) z z Bo Mo Bo B1 kikapcsolva x x B1 Mxy wo y y wo

NMR spektrométer Az NMR spektrométer alapvetően egy nagy és drága FM rádió. Mágnes- Ma döntően szupravezető mágnesek. Frekvenciagenerátor – Előállítja az wo frekvenciát, amely a B1 teret indukálja. CW és pulzustechnika. Detektor - érzékeli a mágnesezettséget az <xy>síkban Recorder - XY plotter, oszcilloszkóp, számítógép, stb Bo É D Mágnes B1 Rekorder Frekvencia generátor Detektor

NMR spektrométerek egykor és ma

HO-CH2-CH3 Kémiai eltolódás low field high field Ha minden magnak egy jellemző wo Larmor freknciája van egy adott mágneses térben, mire jó az NMR spektroszkópia? Minden egyes mag megérzi azt a kémiai környezetet, amely befolyásolja a körülötte kialakuló effektív mágneses teret, mely a polarizáló és a helyi mágneses tér együttes hatására alakul ki körülötte Beff = Bo - Bloc --- Beff = Bo( 1 - s ) s neve : mágneses árnyékolás. A mágneses árnyékolást befolyásolja a szomszédos magok, csoportok jelenléte, az elektronfelhő, azaz a molekulában levő kötések, hibridállapot stb. Ennek alapján az etanol spektrumának így kellene kinézni: HO-CH2-CH3 low field high field wo

Kémiai eltolódás skála (d, ppm) Lehetne frekvencia skálát is alkalmazni. Nehézkes, mivel Bloc isokkal kisebb, mint Bo, a számláló viszonylag kicsil (néhány száz Hz), míg a nevező nagy (száz MHz). Egy relatiív skálát használunk, minden jelet egy belső standard vegyület bizonyos jeléhez vonatkoztatva,. A skála előnye, hogy minden műszeren mért eredmény összehasonlítható. Általános belső standard a tetrametilszilán (TMS), mivel oldható a legtöbb oldószerben, semleges, könnyen eltávolítható és 12 ekvivalens 1H és 4 ekvivalens 13C atomot tartalmaz w - wref d = ppm (parts per million) wref C H 3 H 3 C S i C H 3 C H 3

Kémiai eltolódás skálák 1H, ~ 15 ppm: 13C, ~ 220 ppm: Alkoholok, ketonok a protonjai Aromás H Amidok Sav OH Aldehidek Olefinek Alifás H ppm 15 10 7 5 2 TMS Aromás C, konjugált alkének C=O ketonok Alifás CH3, CH2, CH Olefinek ppm 210 150 100 80 50 TMS C=O savak, aldehidek, észterek Heteroatomhoz kapcsolódó C