DNS replikáció DNS RNS Fehérje

Slides:



Advertisements
Hasonló előadás
Utazás a sejtben Egy átlagos emberi sejt magja megközelítőleg 510-15 gramm mennyiségű és 1,8-2 méter hosszúságú (3000 millió bázispárnyi) DNS-ből,
Advertisements

IV. rész DNS-RNS-fehérje eukariótákban
III. rész DNS-RNS-fehérje prokariótákban
II. rész DNS szintézis.
Nitrogén tartalmú szerves vegyületek
Készítette: Bacher József
Biokémia fontolva haladóknak II.
DNS replikáció Szükséges funkciók Iniciáció
Kromoszóma és replikáció
DNS replikáció DNS RNS Fehérje
DNS replikáció: tökéletes másolat osztódáskor
DNS replikáció DNS RNS Fehérje
A DNS Szekvenálás 2008 Géntechnikák labor.
Nukleinsavak – az öröklődés molekulái
Természetismeret DNS RNS A nukleinsavak.
Fehérjeszintézis Szakaszai Transzkripció (átírás)
A NUKLEINSAVAK MANIPULÁCIÓJA SORÁN HASZNÁLATOS ENZIMEK
A génszabályozás prokariotákban és eukariótákban
Kedvenc Természettudósom:
Nukleotidok, nukleinsavak
génszabályozás eukariótákban
Az Örökítőanyag.
Génexpresszió (génkifejeződés)
Polimeráz láncreakció (PCR)
Öröklődés molekuláris alapjai
A nukleinsavak.
A nukleinsavak.
Nukleotidok.
Nukleusz A sejt információs rendszere
DNS amplifikáció pl . DNS szekvenálásnál nagy jelentősége van
Egészségügyi mérnököknek 2010
Egészségügyi mérnököknek 2010
Nukleotid típusú vegyületek
Arabidopsis thaliana tip120/cand1 T-DNS inszerciós mutáns jellemzése.
NUKLEINSAVAK MBI®.
Nukleinsavak és a fehérjék bioszintézise
Nukleotid típusú vegyületek: nukleinsavak és szabad nukleotidok
A DNS szerkezete és replikációja
Nukleozidok, nukleotidok, nukleinsavak
Nukleinsavak kimutatása, szekvenálás
IN VITRO MUTAGENEZIS Buday László.
A P elem technikák: enhanszerek és szupresszorok azonosítása
Az RNS világ, hibaküszöb
Nukleinsavak énGÉN….öGÉN.
Replikáció, transzkripció, transzláció
Kromoszóma és replikáció
DNS szintézis, replikáció Információ hordozó szerep bizonyítéka Avery-Grifith kísérlet Bakterifágos kísérlet.
Nukleinsavak Felfedezésük, típusaik Biológiai feladatuk Kémiai felépítésük Pentózok Foszforsav N-tartalmú bázisok Purin bázisokPirimidin bázisok.
34. lecke A fehérjék felépítése a sejtben. Lényege: Lényege:  20 féle aminosavból polipeptidlánc (fehérjelánc) képződik  A polipeptidlánc aminosav sorrendjét.
24. lecke Nuklein- vegyületek. A nukleotidok Összetett szerves vegyületek építőmolekulái: építőmolekulái:  5 C atomos cukor (pentóz)  Ribóz  Dezoxi-ribóz.
Nukleinsavak. Nukleinsavak fontossága Az élő szervezet nélkülözhetetlen, minden sejtben megtalálható szénvegyületei  öröklődés  fehérjék szintézise.
Polimeráz Láncreakció:PCR, DNS ujjlenyomat
Biomérnököknek, Vegyészmérnököknek
RNS TUMORVÍRUSOK (Retrovírusok)
Replikáció Wunderlich Lívius 2015.
Bio- és vegyészmérnököknek 2015
DNS replikáció DNS RNS Fehérje
A nukleinsavak szerkezete
A sejtmag szerkezete és működése I. Dr. habil. Kőhidai László
Új molekuláris biológiai módszerek
Nukleinsavak • természetes poliészterek,
Molekuláris biológiai módszerek
A DNS replikációja Makó Katalin.
A génexpresszió és az ezzel kapcsolatos struktúrák
Sejtmag, kromatin, kromoszóma. Replikáció.
Dr. Röhlich Pál prof. emeritus
Új molekuláris biológiai módszerek
Hattagú heterociklusos vegyületek
Nukleotidok és nukleinsavak
Nukleotidok.
Előadás másolata:

DNS replikáció DNS RNS Fehérje A molekuláris biológia centrális dogmája: transzkripció transzláció DNS RNS Fehérje Reverz transzkriptáz DNS által tárolt információ: - fehérjék szerkezete - fehérjeszintézis időbeli és mennyiségi meghatározása Nukleinsavak: nukleotid egységekből felépülő polimerek. RNS: adenin, guanin, citozin, uracil bázist tartalmazó ribonukleotidok DNS: adenin, guanin, citozin, timin bázist tartalmazó dezoxi-ribonuleotidok

Polimer váz: foszfodiészter kötéssel kapcsolódó ribóz (RNS), vagy dezoxi-ribóz (DNS) egységek. Információ: bázissorrend

A DNS kettős hélix szerkezete kis árok nagy árok A fehérjék számára csak a nagy árokban áll rendelkezésre elegendő információ a megfelelően biztos szerkezetfelimeréshez. nagy árok kis árok

A DNS replikációja szemikonzervatív

A DNS replikációja prokatiótákban A replikációban részt vevő enzimek DNS polimeráz I: az elsőként felfedezett DNS polimeráz, egy polipeptidből áll, 3 féle aktivitással is bír: - szintetikus aktivítás - korrekciós 3’-5’ exonukleáz - hibajavító 5’-3’ exonukleáz aktivitás DNS polimeráz III: felelős a replikációért, több alegységből áll, 2 féle enzimaktivitással bír: - szintetikus - 3’-5’ exonuleáz aktivitás

A replikáció folyamata A nukleinsavak szintézise mindig az 5’ végüktől a 3’ végük felé történik. A folyamathoz szükséges: - Templát DNS - A 4 különböző dezoxi-ribonukleotid-5’-foszfát (dATP, dTTP, dCTP, dGTP) Mg2+ A DNS polimerázok nem képesek a szintézis megindítására: egy indító láncot, primert igényelnek. A minta DNS szál és a szintetizálódó DNS szál antiparalel lefutású: szintézis 5’ 3’ irányú olvasás 3’ 5’ irányú

Hibajavítás A nem komplementer bázisok beépülését meg kell akadályozni. A hibajavítást maga a DNS polimeráz végzi korrekciós 3‘-5’ exonukleáz aktivitás. Komplementer kettősszálú régiókban a DNS polimeráz I 5’-3’ exonukleáz aktivitása válik fontossá. DNS-ligáz Két DNS szál összekötését végzi. A rekció energiaigényét prokariótákban a NAD hidrolízise, eukariótákban az ATP hidrolízise fedezi.

Az eukarióta kromoszóma szerveződése nukleoszóma

Az eukarióta DNS replikáció sajátságai A replikáció a hosszú lineáris DNS molekula mentén egyszerre sok startponton indul meg. A vezető szál és a késlekedő szál szintézisét nem ugyanaz a polimeráz végzi: - a-DNS polimeráz: késlekedő szál - d-polimeráz: vezető szál - nincs saját exonukleáz aktivitásuk, ezt külön enzim végzi (a polimerázhoz asszociálódva) - az eukarióta DNS-ligáz energiaigényét ATP hidrolízisével fedezi

Ribonukleinsavak mRNS: ez a molekula szállítja a fehérjék szerkezetére vonatkozó genetikai információt a DNS irányából a fehérjék szintéziséért felelős szervecskéhez a riboszómákhoz. rRNS: a riboszómák szerkezeti felépítésében részt vevő nukleinsav. tRNS: a hárombetűs genetikai kód átfordítását végző adaptermolekula.

Transzkripció

A promóter szerepe a transzkripciós szabályozásban A transzkripció iniciációja kiemelt fontosságú: melyik fehérjét és milyen arányban fejezi ki a sejt Bakteriális RNS polimeráz: több alegységes komplex. Különálló alegység, a s faktor felelős a DNS-en a transzkripció kezdőhelyét jelentő szignál felismeréséért. Az RNS polimeráz gyorsan végigszánkázik a DNS-en, ha azonban a polimeráz a promóter régióra csúszik szorosan hozzáköt. s faktor: a felismerő