FOLYÓVIZEK OXIGÉN HÁZTARTÁSA

Slides:



Advertisements
Hasonló előadás
Nitrogén vizes környezetben
Advertisements

Horváth Gábor Környezetmérnöki Kft
A szennyvíztisztítás biokinetikai problémái a gyakorlatban.
A LÉGKÖRI NYOMANYAGOK FORRÁSAI ÉS NYELŐI
Porleválasztó berendezések
Gáz-folyadék fázisszétválasztás
Dr. Clement Adrienne Felszíni vizek minősége és terhelhetősége: a vízminőség-szabályozás új feltételrendszere a VKI tükrében BME VÍZI KÖZMŰ ÉS KÖRNYEZETMÉRNÖKI.
Akvapónia üzemeltetés Aquaponics operation and maintenance
Kén vizes környezetben Dr. Fórizs István. Kén izotópok 32 S=95,1% 33 S=0,74% 34 S=4,2% 36 S=0,016% Általában:  34 S szulfidok <  34 S szulfátok.
Érzékenységvizsgálat
Regionális szennyvíz rendszerek befogadó vízminőségére gyakorolt hatásai: Szennyvíz agglomerációkra vonatkozó EU követelmények és hazai szabályozás.
Környezettechnika Modellezés Biowin-nel Koncsos Tamás BME VKKT.
Innovatív szennyvíztechnológiai módszerek a felszíni vizekbe kerülő prioritás szennyezőanyag terheléseinek csökkentésére Dr. Fleit Ernő, egyetemi docens.
Vízminőségi jellemzők
FOLYÓVIZEK OXIGÉN HÁZTARTÁSA
TRANSZPORT FOLYAMATOK
Kémiai szennyvíztisztítás
Talaj 1. Földkéreg felső, termékeny rétege
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek.
SZEKTOR EMISSZIÓ ÁLLAPOT HATÁS Ipar VOC Felszíni ózon Mezőgazd. termés Közlekedés Energia termelés Háztartás Mezőgazd. NO x NH 3 PM SO 2 PM koncentráció.
Környezeti elemek védelme III. Vízvédelem KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
KÖRNYEZETVÉDELEM VÍZVÉDELEM.
Az elemek lehetséges oxidációs számai
MIÉRT NEM MÉRHETŐ? E + S P + E mol/dm3!!!!
MIÉRT NEM MÉRHETŐ? E + S P + E mol/dm3!!!!
FERMENTÁCIÓS RENDSZEREK LEVEGŐELLÁTÁSA
Vízminőségi modellezés. OXIGÉN HÁZTARTÁS.
Biogáz Tervezet Herkulesfalva március 01..
Produkcióbiológia, Biogeokémiai ciklusok
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
Regionális szennyvíz rendszerek befogadó vízminőségére gyakorolt hatásai: Szennyvíz agglomerációkra vonatkozó EU követelmények és hazai szabályozás.
KÖRNYEZETI RENDSZEREK MODELLEZÉSE
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
KÉMIAI KEZELÉS ALKALMAZÁSA A SZENNYVÍZTISZTÍTÁSBAN
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
TÓ FOLYÓ VÍZMINŐSÉGSZABÁLYOZÁSI PÉLDA  C H3 Célállapot (befogadó határérték) Oldott oxigén koncentráció ChChChCh  C H2  C H2 - a 13 E 1 (1-X 1 ) - a.
VÍZFOLYÁSOK OXIGÉN HÁZTARTÁSA. SZENNYVÍZ HATÁSA (EMISSZIÓ – IMMISSZIÓ) BOI 5 emisszió nő, BOI 5 koncentráció nő, oldott O 2 koncentráció csökken (és fordítva)
Érzékenységvizsgálat
Koaguláció.
Példa: a Streeter-Phelps vízminőségi modell kalibrálása
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
-Érzékenység a paraméterek hibáira, -érzékenység a bemenő adatok hibáira Nézzünk egy egyszerű példát...
Emberi tevékenység Levegő Víz Föld Élővilág Művi környezet Ember Ökoszisztéma Települési környezet Táj.
11.ea.
Érzékenységvizsgálat a determinisztikus modell
Transzportfolyamatok II. 3. előadás
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
Visszatérve a 3 szennyező példához: Három szennyezőforrás esetén a gazdaságilag legkedvezőbb megoldás kiépítését szeretnénk hatósági eszközökkel elősegíteni.
Környezetgazdaságtan Fonyó György Vízi Közmű és Környezetmérnöki Tanszék U épület,
Környezeti rendszerek modellezése
FOLYÓVIZEK OXIGÉN HÁZTARTÁSA
Nitrifikáció vizsgálata talajban
OECD GUIDELINE FOR THE TESTING OF CHEMICALS Soil Microorganisms: Carbon Transformation Test OECD ÚTMUTATÓ VEGYI ANYAGOK TESZTELÉSÉRE Talaj Mikroorganizmusok:
Vízminőség védelem A víz az ember számára: táplálkozás, higiénia, egészségügy, közlekedés, termelés A vízben található idegen anyagok - oldott gázok -
Energia-visszaforgatás élelmiszeripari szennyvizekből
Vízszennyezés.
KÖRNYEZETI MODELLEK MI A CÉLJA A MODELLEZÉSNEK? (MIBEN SEGÍTENEK A KÖRNYEZETI MODELLEK? BONYOLULT RENDSZEREK MEGISMERÉSE (Segítenek a kölcsönhatások.
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
Vízminőség-védelem 10. ea.
VÍZMINŐSÉGI PROBLÉMÁK
Központi Szennyvíztisztító Telep
VÍZFOLYÁSOK OXIGÉN- HÁZTARTÁSA. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) LÉGKÖRI OXIGÉNBEVITEL O2O2 KÉTVÁLTOZÓS.
A levegőtisztaság-védelem fejlődése , Franciaország világháborúk II. világháború utáni újjáépítés  Londoni szmog (1952) passzív eljárások (end.
FOTOSZINTETIKUS PIGMENTEK a tilakoid-membránok lipid-fázisának kb. felét pigmentek teszik ki a többi galaktolipid és foszfolipid kettősréteg (erősen telítetlen.
A biológiai és a kémiai szennyvíztisztítás szimbiózisa
BAKTERIÁLIS SZENNYEZÉS
VÍZMINŐSÉG,VÍZSZENNYEZÉSEK. VÍZMOLEKULA - H 2 O 1.4 milliárd km 3, a földkéreg felszínének 71 %-át borítja víz KÜLÖNLEGES KRISTÁLYSZERKEZET  SŰRŰSÉG.
Ökológiai szempontok a szennyvíztisztításban
VÍZMINŐSÉGSZABÁLYOZÁSI PÉLDA
Mikroszkópos biológiai problémák kezelése és alkalmazása a vízbiztonsági tervekben május 09. Előadó: Fazekas Zoltán Technológiai osztályvezető.
Előadás másolata:

FOLYÓVIZEK OXIGÉN HÁZTARTÁSA

EGYSZERŰ O2 HÁZTARTÁS OXIGÉNBEVITEL SZENNYVÍZ SZERVESANYAG (BOI5) O2 HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS)

MÉRLEG FOTOSZINTÉZIS MELLÉKFOLYÓK LÉGZÉS LÉGKÖRI DIFFÚZIÓ ÜLEDÉK SZERVESANYAG (C, N) Oldott oxigén egyenlet:

Szerves szén (C) lebontása Oxigén fogyasztás (BOI: 2.7 g O2 = 1 g szerves C) L nap O2 fogyasztás L0 BOI L – maradék oxigén igény 5 BOI5 1. rendű kinetika (exponen-ciális) L0 = BOI L (t) = L0 exp(-k1t) BOI = L0- L0 exp(-k1t)=L0 (1-exp(-k1t)) BOI5 = BOI - BOI exp(-k15)= BOI (1-exp(-k15))

Lebontási folyamatok sebességét jelzi, kinetikai állandó Lebomlási tényező (k1) Lebontási folyamatok sebességét jelzi, kinetikai állandó Dimenzió: 1/nap Hőmérsékletfüggő T Tlimit Érvényesség! 20C 1  = 1.04 Függ a szennyvíztisztítás mértékétől Technológia k1(T=20C) f Nincs tisztítás 0.35 1.2 Mechanika 0.2 1.6 Mechanika+kémiai kicsapatás 0.15 2.0 Biológiai tiszt. 0.08 3.2

Oxigén bevitel (légköri diffúzió) C < Cs C Cs – telítési koncentráció Henry törvény: p = He Cs p – parciális nyomás He – Henry szám f(T, P, sótartalom, stb.) T Cs sótartalom T Cs (mg/l) 14.6 15 10 20 9 25 8.4 30 7.6

Oxigén bevitel (légköri diffúzió, film elmélet) C h Molekuláris diff. tényező (m2/s) V Oxigén átadási tényező (m/nap) Fajlagos oxigén beviteli tény.(1/nap) Megoldás: exponenciális (D = CS - C)

Oxigén beviteli tényező (k2) Mi befolyásolja? - Áramlás jellemzői: turbulencia - Vízmélység, sebesség - Empirikus összefüggések - Érvényesség, dimenzió és kis H!!! EPA procedúra k2  0.1 .. 100 (1/nap) Mérés Helyszíni nyomjelzős kísérletek illékony gáz injektálásával (etilén, propán, propilén, kripton)

Atmospheric Reaeration Depth, (m) Depth, (ft) Method of Covar (1976) Uses formulae of: O’Connor & Dobbins Churchill Owens-Gibbs Input stream velocity and depth of flow Select kr (d-1) at intersection of flow and depth coordinates CEE 5134 - 9 - Fall, 2007

Reaeration Coefficient Estimation from Stream Descriptions Water Body Description kr (days-1 20 oC) Small ponds and backwaters 0.10-0.23 Sluggish streams and large lakes 0.23-0.35 Large streams of low velocity 0.35-0.46 Large streams of normal velocity 0.46-0.69 Swift streams 0.69-1.15 Rapids and waterfalls > 1.15 Source: Peavy, Rowe and Tchobanoglous, 1985 CEE 5134 - 10 - Fall, 2007

Simplified Schematic Representation of Model Assume PF and define control volume as a unit rectangle Control volume moves downstream at constant velocity Determine the initial oxygen content after mixing (L0) Compute DO at any time by solving differential equation for BOD exertion and atmospheric reaeration CEE 5134 - 11 - Fall, 2007

Folyóra Q, v Lh, Ch q, Lszv, Cszv Feltételek: permanens (Q(t), E(t)=konst, 1D (azonnali elkeveredés), prizmatikus meder Szerves C (BOI) egyenlet: Vagy: levonulási idő (utazunk a folyón) L0 számítása (1D): azonnali elkeveredés!

Folyóra Q, v Lh, Ch q, Lszv, Cszv Oldott oxigén (inhomogén lineáris diff. egyenlet) : D = Cs - C deficit

Folyóra Q, v Lh, Ch q, Lszv, Cszv L0 x, t* L Lh Cs Ch x, t* D0 C C0 Dmax Cmin xkrit, t*krit

Components of the Oxygen Sag Curve

Definitions for the DO Sag Curve CEE 5134 - 16 - Fall, 2007

Kritikus hely meghatározása Minimum:  1.5 – 2 nap  2  0 Hígulás: L0, D0  Dmax, Cmin. Szabályozás. Iteráció. Mérés! Több szennyező: szuperponálható

Több szennyvízbevezetés Q, v Lh, Ch q1, Lszv1, Cszv1 q2, Lszv2, Cszv2 L Lh L0 C Ch C0 Cs Cmin xkrit, t*krit D0 Dmax x, t* Lh2 x, t* Ch2 Do2

Streeter-Phelps (1925) oxigén modell Szervesanyag lebomlás egyenlete (L: BOI∞) Oldott oxigén egyenlete (C: O2) Továbbfejlesztések: Nitrifikáció egyszerűsítve Nitrifikáció részletesebben Szervesanyag oldott és ülepedő frakciók különválasztása Üledék oxigén igénye Fotoszintézis, légzés Speciális eset: anaerob szakasz számítása

Nitrifikáció egyszerűsítve 5 20 nap BOI BOIN Kjeldahl N (Szerves N, NH4-N) - LN --> mérés BOIC Két lépés: Nitrosomonas 2NH4+ + 3O2  2NO2- + 2H2O + 4H+ Nitrobacter 2NO2- + O2  2NO3- 3.43 g O2 1.14g O2 : 4.57 g O2 Feltételek: - Nitrifikáló (aerob autotróf) baktériumok, - Lúgos környezet (pH > 6), - Oxigén jelenléte, oldott oxigén > 1-2 mg/l, - Toxikus anyagok gátolják! - Hőmérsékletfüggő - Legegyszerűbb leírás: L = BOIC + BOIN LN=BOIN = 4.57KN

Hidrolízis, ammonifi-káció Nitrifikáció N forgalom Növényi asszimiláció N1 – szerves N, N2 – NH4-N N3 – NO2-N, NO3-N N1 N2 N3 Hidrolízis, ammonifi-káció Nitrifikáció Ülepedés Denitrifikáció O2 N1 N2 N3 Oldott O2 egyenletbe: - knitrif 4.57 N2

Szervesanyag oldott és ülepedő frakciók különválasztása Lp = fp L partikulált Ld = fd L oldott t L0 ülepedés biológiaioxidáció

Szennyvízbevezetés alatti szakaszon Üledék oxigén igénye Okok: szennyvíz ülepedő részecskéi iszapréteget képeznek elhalt növények, falevelek felhalmozódása alga ülepedés Magas szervesanyag tartalmú üledék (iszap): felső részében aerob, alsó részében anaerob lebomlási folyamatok  oxigén elvonása a vízből lebomlás  CO2, CH4, H2S képződés gázképződés  felszálló buborékok, iszap flotációja esztétikai problémák Közelítés: konstans (?) megoszló terhelés (S) „SOD” S (g O2 / m2,nap) Üledék S (gO2/m2,nap) Települési szennyvíz(iszap) bevezetés környezetében 2-100 (4) Szennyvízbevezetés alatti szakaszon 1-2 (1.5) Homokos üledék 0.2-1 (0.5) Árapályos folyamtorkolati iszap 0.05-0.1 (0.07)

Napi átlagos O2 termelés Pm mérésből: Pa Fotoszintézis, légzés Napfény, glükóz 6CO2 + 6H20  C6H12O6 + 6O2 Fotoszintézis (P mgO2/m3,nap) Sötétben 6CO2 + 6H20  C6H12O6 + 6O2 Légzés (R mgO2/m3,nap) t (h) P, R 24 Pm Napi átlagos O2 termelés Pm mérésből: Pa t1 t2 fotoperiódus túltelítettség t (h) O2 24 R, P számításból: alga egyenlet (Klorofill-a * a = P) Cs C Oldott O2 egyenletbe

Oxigén vonal (ill. összes oldott oxigén deficit) számítása Deficit kezdeti értéke Szerves C lebontás Nitrifikáció Üledék oxigén igénye Fotoszintézis Vízinövényzet légzése

Anaerob szakasz számítása Nagy terhelés Időszakos vagy állandósult anaerob állapot Anaerob lebomlás, gázképződés, fémek visszaoldódása 1. Anaerob szakasz kezdete: x1 (C=0) L t* L1 L2 2. Anaerob szakasz: x1 x2 C t* 3. Anaerob szakasz vége: x2 x1 x2

Példa: Szennyvízbevezetés hatása a befogadó oldott oxigén koncentrációjára (1 D, permanens) Települési szennyvíz jellemzői: LE 120 000 BOI5 koncentráció: 600 mg/l Kjeldahl N: 120 * 4.57 = 548 mg/l q = 120 000 * 0.1 = 12000 m3/nap = 0.14 m3/s Befogadó vízfolyás jellemzői: Háttér koncentrációk: Lh = 5 mg/l, Ch = 8 mg/l T = 25 C, v = 0.5 m/s, Q = 15 m3/s, Cs = 8.4 mg/l k1 = 0.42 1/nap, k2 = 0.7 1/nap Kezdeti értékek: L0 = 16.6 mg/l, D0 = 0.47 mg/l Kritikus hely: tkrit = 1.9 nap, xkrit = 82 km Cmin = 3.6 mg/l Hígulás szerepe

Az oxigén beviteli tényező hatása a kritikus oxigén koncentrációra, különböző hígulási arányok mellett

Szennyvíztisztítási technológiák relatív költsége és tisztítási hatásfoka Szennyvíz tisztítási technológia Rel. költségek Tisztítási hatásfokok (%) N formák aránya (%) Ber Üzem BOI ÖN ÖP NH4 NO3 Mechanika 1.0 30 5 15 100 M + Kicsapatás 1.09 1.5 55 75 Nagyterhelésű biológia 1.40 1.7 92 25 Kisterhelésű biológia 1.70 2.0 95 Nagyterhelésű Bio + P 1.45 90 Kisterhelésű Bio + P 1.75 2.3 NB +P +részleges N 1.95 2.4 60 NB + P + teljes N 2.40 3.0 85