Geometriai Transzformációk

Slides:



Advertisements
Hasonló előadás
Koordináta transzformációk 2
Advertisements

Készítette: Nagy Mihály tanár Perecsen, 2006.
Geometriai transzformációk
Koordináta transzformációk
Koordináta transzformációk
2D képszintézis Szirmay-Kalos László.
Analitikus (koordináta) geometriai gyorstalpaló
Geometriai transzformációk
Geometriai modellezés
Vektormező szinguláris pontjainak indexe
2D képszintézis Szirmay-Kalos László. Számítógépes grafika feladata képszintézis Virtuális világ modell modellezés Metafórák: 2D rajzolás világ = sík.
Geometriai modellezés
Virtuális világ tárolása Szirmay-Kalos László. Belső világ tárolása l Geometria: pontok koordinátái l Topológia: élek-pontok; lapok-pontok;... l hierarchia:
Bevezetés.  A számítógépes grafika inkrementális képszintézis algoritmusának hardver realizációja  Teljesítménykövetelmények:  Animáció: néhány nsec.
Regresszió számítás Mérnöki létesítmények ellenőrzése, terveknek megfelelése Geodéziai mérések – pontok helyzete, pontszerű információ Lineáris regresszió.
Transzformációk kucg.korea.ac.kr.
Másodfokú egyenletek.
Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok
Számítógépes grafika, PPKE-ITK, Benedek Csaba, D képszintézis 4. előadás.
Számítógépes grafika, PPKE-ITK, Benedek Csaba, 2010 Geometriai modellezés 2. előadás.
Kamerák és képalkotás Vámossy Zoltán 2004
3-4. előadás MŰSZAKI KOMMUNIKÁCIÓ.
3. Vetületi ábrázolások számítási eljárásai
Web-grafika II (SVG) 2. gyakorlat Kereszty Gábor.
P z : egy „elemi” projektív transzformáció M = ( m m m m ); P z = ( ) | m m m m | | | | m m m m | | | ( p p p p ) ( 0 0 r 1 ) az.
2. Koordináta-rendszerek és transzformációk 2.1. Koordináta-rendszerek 2.2. Az egyenes és a sík egyenlete 2.3. Affin transzformációk 2.4. Projektív transzformációk.
Lineáris függvények.
2D képszintézis és textúrák
Koordináta-geometria
3.3. Axonometrikus ábrázolások Rövid áttekintés
4.7. Textúra A felület anyagszerűsége Sík-képek ráborítása a felületre
Bevezetés a Számítógépi grafikába - előadás
2. Koordináta-rendszerek és transzformációk
3.4. Perspektív ábrázolások
2. Koordináta-rendszerek és transzformációk
3. Vetületi ábrázolások számítási eljárásai
Készítette: Kreka Bálint
2008/2009 tavasz Klár Gergely  Gyakorlatok időpontjai: ◦ Szerda 10:05–11:35 ◦ Csütörtök 10:00+ε –11:30+ε  Gyakvez: ◦ Klár Gergely ◦
MATEMATIKA GEOMETRIAI TRANSZFORMÁCIÓK: Egybevágósági transzformáció
Másodfokú egyenletek.
Lineáris függvények ábrázolása
16. Modul Egybevágóságok.
A modern fizika matematikája a középiskolában
Vektorok különbsége e-x = [ex-xx ey-xy ez-xz] e e-x x szempozíció
2D képszintézis Szirmay-Kalos László.
Analitikus geometria gyorstalpaló
Számítógépes grafika Bevezetés
Transzformációk Szirmay-Kalos László. Transzformációk (x,y) (x’,y’) = T(x,y) l Tönkre tehetik az egyenletet l Korlátozzuk a transformációkat és az alakzatokat.
3. Vetületi ábrázolások számítási eljárásai
Geometriai transzformációk
2.2. Az egyenes és a sík egyenlete
2. Koordináta-rendszerek és transzformációk
Bevezetés a számítógépi grafikába 2. Paraméteres görbék Paraméteres görbe: 2D-ben: paraméter: általában: kikötések: legyen folytonos legyen folytonosan.
Máté: Orvosi képfeldolgozás8. előadás1 Kondenzált képek Transzport folyamat, pl. mukocilliáris klírensz (a légcső tisztulása). ROI kondenzált kép F 1 F.
Geometriai transzformációk
5. Gyires Béla Informatikai Nap 2005 A CENTR Á LAXONOMET RIKUS LEKÉPEZÉS KOMPUTERGRAFIKAI ALKALMAZÁSA Schwarcz Tibor Komputergrafikai és Könyvtárinformatikai.
Számítógépes grafika, PPKE-ITK, Benedek Csaba, 2010 Geometriai modellezés 2. előadás.
Geometriai feladatok programozása Geometriai programozás Szlávi Péter ELTE IK Média- és Oktatásinformatika Tanszék 2010.
3.4. Perspektív ábrázolások
3.2. Axonometria – Műszaki rajzok párhuzamos vetítéssel
Digitális képanalízis
Hasonlóság modul Ismétlés.
Bevezetés a számítógépi grafikába
Perspektív projekció és kamera paraméterek. Szükséges transzformációk Világkoordináta rendszer (3D) Kamera koordinátarendszer (3D) Képsík koordináták.
Bevezetés a számítógépi grafikába 1.Bevezetés: A Számítógépi grafika tárgya 2.Képek kódolása 3.A geometrikus grafika alapjai 4.Koordináta-rendszerek és.
Függvényábrázolás.
93. óra Transzformációk összefoglalása
Szécsi László 3D Grafikus Rendszerek 7. előadás
ELEMI GEOMETRIAI ISMERETEK
A lineáris függvény NULLAHELYE
Előadás másolata:

Geometriai Transzformációk Szirmay-Kalos László

Geometriai transzformációk (x’,y’) = T(x,y) (x,y) Általában az egyenlet elromlik Korlátozás: Pont, szakasz, sokszög alakzat Pont-, szakasz-, sokszögtartó transzformációk Affin transzformációk = párhuzamos egyeneseket párhuzamos egyenesekbe Homogén lineáris transzformációk

Elemi affin transzformációk Eltolás: r = r + p Skálázás: x’= Sx x; y’= Sy y; Forgatás: Sx 0 0 Sy Fix pont: origó r’ = r cos f sin f -sin f cos f r’ = r Fix pont: origó

Elemi transzformációk Nyírás: x’= x; y’= y + a x; Tükrözés: 1 a 0 1 r’ = r 1 0 0 -1 r’ = r

Transzformáció fix pontja: pivot point: (xp, yp) Skálázás: x’= Sx (x-xp) + xp; y’= Sy (y-yp) + yp; Forgatás: x’= (x-xp)*cos f - (y-yp)* sin f + xp; y’= (x-xp)*sin f + (y-yp)* cos f + yp;

Összetett transzformáció Affin transzformáció: r’ = r A + p A: lineáris transzformáció forgatás, skálázás, tükrözés, nyírás, stb. p: eltolás Amíg lineáris transzformáció: konkatenáció r’ = (...(r A1) A2)... An) = r (A1A2... An )

Homogén koordinátás transzformációk Eltolás nem fér bele a 2x2-es mátrixba Dolgozzunk 3x3-as mátrixokkal A a11 a12 0 a21 a22 0 p1 p2 1 [r’, 1] = [r, 1] = [r A + p, 1] p [r’,1] = (...([r,1] T1) T2)... Tn) = [r,1] (T1T2... Tn)

Centrális projekció Eltűnő egyenes Ideális Vetítési pontok középpont képsík tárgysík

Projektív geometria Euklideszi geometria Projektív geometria 2 pont meghatároz egy egyenest 2 különböző egyenes legfeljebb 1 pontban metszi egymást 1 ponton keresztül pontosan 1 egyenes megy át, amely nem metsz egy, a pontra nem illeszkedő másik egyenest (párhuzamosság) centrális projekcióra lyukas (ideális pontok) algebrai alap: Descartes koordináta rendszer Projektív geometria Projektív sík = Euklideszi sík pontjai + ideális pontok Minden egyeneshez vegyünk hozzá egy ideális pontot úgy, hogy két egyenes akkor kapja u.a. pontot, ha párhuzamos Az egyenesek halmazát egészítsük ki az ideális pontokat tartalmazó egyenessel 2 különböző egyenes pontosan 1 pontban metszi egymást algebrai alap: homogén koordináták

Homogén koordináták [Xh ,Yh ,h] [0,0,0] nem pont Yh Összsúly: h = Xh+ Yh + w Pont homogén koordinátái: [Xh ,Yh ,h] w Xh Homogén [0,0,0] nem pont

Homogén-Descartes kapcsolat affin pontokra Xh [1,0]+Yh [0,1]+w[0,0] r(Xh ,Yh ,h) = h Yh r(Xh ,Yh ,h) = ( , ) [0,1] Xh h Yh h w Xh Xh h Yh h [0,0] x = y = [1,0]

( , ) Következmények Minden affin ponthoz van: [Xh ,Yh ,h] (x, y)  [x, y,1] Ha h  0, akkor [Xh ,Yh ,h] affin pont ( , ) Xh h Yh h

h=0 (x,y,0) (x,y,1/3) (x,y,1) (2x,2y,1) = (x,y,1/2) y x

Párhuzamos egyenesek metszéspontja Descartes koordinátákkal a1 x + b1 y +c1 = 0 a2 x + b2 y +c2 = 0 x, y a x + b y + c1 = 0 a x + b y + c2 = 0 c1 - c2 = 0  nincs megoldás

Párhuzamos egyenesek metszéspontja homogén koordinátákkal Descartes: a x + by +c = 0 a Xh/h + b Yh/h +c = 0 Homogén: a Xh + b Yh +c h = 0 a Xh + b Yh + c1 h = 0 a Xh + b Yh + c2 h = 0 (c1 - c2) h = 0  h = 0, Xh = b, Yh = -a [b ,-a ,0]

[ , ] Beágyazott modell [Xh ,Yh ,h] h Yh [Xh ,Yh ,0] Xh Xh h Yh h 3D euklideszi tér [Xh ,Yh ,h] [ , ] h Xh h Yh h (x, y) = 2D projektív sík [0,0,0] nem pont [Xh ,Yh ,h]·a u.a. pont 1 y x Yh [Xh ,Yh ,0] Xh

Projektív egyenes paraméteres egyenlete [X1 ,Y1 ,h1] h [X2 ,Y2 ,h2] Yh Xh Szakasz: Konvex kombináció! [X(t) ,Y(t) ,h(t)]=[X1 ,Y1 ,h1]·t + [X2 ,Y2 ,h2]·(1-t)

Homogén lineáris transzformációk Euklideszi sík affin transzformációi: [x’, y’] = [x, y] A + p Homogén koordináták lineáris függvényei: [Xh’ ,Yh’ ,h’] = [Xh,Yh,h] T + p Homogén lineáris transzformációk bővebbek: a11 a12 0 a21 a22 0 p1 p2 1 T =

Homogén lineáris transzformációk tulajdonságai Pontot-pontba, egyenest-egyenesbe (pontba), konvex kombinációkat, konvex kombinációkba visznek át Példa: egyenest egyenesbe: [X(t) ,Y(t) ,h(t)]=[X1 ,Y1 ,h1]·t + [X2 ,Y2 ,h2]·(1-t) P(t) = P1·t + P2·(1-t) // · T P*(t) = P(t)·T = (P1·T) ·t + (P2·T) ·(1-t)

Példa: Euklideszi geometriában nem lineáris transzformáció 0 1 q 0 0 0 x, y x’, y’ [x, y, 1] [x, y, px+qy] x px+qy y px+qy px+qy=1

Veszélyek: átfordulási probléma Ideális pont =Projektív egyenes (topológia) Szakasz ?????

A projektív tér, 3D pontok homogén koordinátái Zh Összsúly: h = Xh+ Yh + Zh + w Pont homogén koordinátái: [Xh ,Yh ,Zh,h] w Yh Xh Homogén

A projektív tér egyenesei és síkjai [X(t),Y(t),Z(t),h(t)]=[X1,Y1,Z1,h1]·t + [X2 ,Y2,Z2,h2]·(1-t) Euklideszi, Descartes koord: nx x + ny y + nz z + d = 0 Euklideszi, homogén koord: nx Xh/h + ny Yh/h + nz Zh/h +d = 0 Projektív: nx· Xh + ny ·Yh + nz · Zh +d · h = 0 nx ny nz d [Xh ,Yh ,Zh,h]· = 0

Invertálható homogén lineáris transzformációk síkot síkba visznek át P T P* = P·T T-1 (P*·T-1)·NT = 0 P*·(T-1·NT) = 0 P*·(N·(T-1)T)T = 0 P*·N*T = 0 P·NT = 0 N*=N·(T-1)T Inverse-transpose

Projektív geometria a számítógépes grafikában Projektív tér Világ: Euklideszi tér [x,y,z]  (x, y,z,1) (Xh ,Yh ,Zh ,h) (T1T2... Tn) Projektív tér Kép: Euklideszi tér [ , , ] Xh h Yh h Zh h