Kvantitatív Módszerek

Slides:



Advertisements
Hasonló előadás
Nevezetes eloszlások, normál eloszlás
Advertisements

A bizonytalanság és a kockázat
Kvantitatív módszerek
Kvantitatív módszerek
3. Két független minta összehasonlítása
Gazdasági informatika
Utófeszített vasbeton lemez statikai számítása Részletes számítás
Földrajzi összefüggések elemzése
Főkomponensanalízis Többváltozós elemzések esetében gyakran jelent problémát a vizsgált változók korreláltsága. A főkomponenselemzés segítségével a változók.
Összefüggés vizsgálatok
Összefüggés vizsgálatok x átlag y átlag Y’ = a + bx.
Gazdaságelemzési és Statisztikai Tanszék
Dr. Szalka Éva, Ph.D.1 Statisztika II. IX.. Dr. Szalka Éva, Ph.D.2 Idősorok elemzése.
Statisztika II. VI. Dr. Szalka Éva, Ph.D..
Regresszió és korreláció
Dr. Szalka Éva, Ph.D.1 Statisztika II. IX.. Dr. Szalka Éva, Ph.D.2 Idősorok elemzése.
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Ozsváth Károly TF Kommunikációs-Informatikai és Oktatástechnológiai Tanszék.
T.Gy. Beszedfelism es szint Beszédfelismerés és beszédszintézis Beszédjelek lineáris predikciója Takács György 4. előadás
III. előadás.
Lineáris korreláció és lineáris regresszió. A probléma felvetése y = 1,138x + 80,778r = 0,8962.
PTE PMMK Matematika Tanszék dr. Klincsik Mihály Valószínűségszámítás és statisztika előadások Gépész-Villamosmérnök szak BSc MANB030, MALB030 Bevezető.
Sárgarépa piaca hasonlóságelemzéssel Gazdaság- és Társadalomtudományi kar Gazdasági és vidékfejlesztési agrármérnök I. évfolyam Fekete AlexanderKozma Richárd.
Regresszióanalízis 10. gyakorlat.
Kvantitatív módszerek
Kovarianciaanalízis Tételezzük fel, hogy a kvalitatív tényező(k) hatásának azonosítása után megmaradó szóródás egy részének eredete ismert, és nem lehet,
Dr. Szalka Éva, Ph.D.1 Statisztika II. VI.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Kvantitatív módszerek
Budapesti Műszaki és Gazdaságtudományi Egyetem
Gazdaság- és Társadalomtudományi Kar Regionális Gazdaságtani és Vidékfejlesztési Intézet A LEADER PROGRAM MINT HELYI PARTNERSÉG KÉRDÉSEI MAGYARORSZÁGON.
A évi demográfiai adatok értékelése
Matematikai statisztika Készítették: Miskoltzy Judit Sántha Szabina Szabó Brigitta Tóth Szabolcs Török Tamás Marketing Msc I. évf., I. félév, levelező.
Kvantitatív Módszerek
Kvantitatív módszerek
Idősor elemzés Idősor : időben ekvidisztáns elemekből álló sorozat
Gazdaságstatisztika Korreláció- és regresszióelemzés 20. előadás.
Következtető statisztika 9.
A sztochasztikus kapcsolatok (Folyt). Korreláció, regresszió
Alapsokaság (populáció)
Alapfogalmak.
Lineáris regresszió.

Két kvantitatív változó kapcsolatának vizsgálata
A klinikai transzfúziós tevékenység Ápolás szakmai ellenőrzése
Tanulói utánkövetés 2009/2010. A 2009/2010-es tanévben iskolánkban 210 tanuló végzett. 77 fő a szakközépiskola valamelyik tagozatán 133 fő szakmát szerzett.
TÁRSADALOMSTATISZTIKA Sztochasztikus kapcsolatok II.
1. Melyik jármű haladhat tovább elsőként az ábrán látható forgalmi helyzetben? a) A "V" jelű villamos. b) Az "M" jelű munkagép. c) Az "R" jelű rendőrségi.
Valószínűségszámítás - Statisztika. P Két kockával dobunk, összeadjuk az értékeket Mindegyik.
A kombinációs táblák (sztochasztikus kapcsolatok) elemzése
Petrovics Petra Doktorandusz
Kvantitatív módszerek
Számtani és mértani közép
Bevezetés a Korreláció & Regressziószámításba
Korrelációszámítás 1. hét.
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Regresszió-számítás március 30. Dr. Varga Beatrix egyetemi.
Korrelációs kapcsolatok elemzése
Valószínűségszámítás II.
Többdimenziós valószínűségi eloszlások
Korreláció-számítás.
Gazdaságstatisztika Gazdaságstatisztika Korreláció- és regressziószámítás II.
Korreláció, regresszió

Kvantitatív módszerek
Gazdaságstatisztika Konzultáció a korreláció- és regressziószámítás, idősorok elemzése témakörökből.
III. előadás.
Dr. Varga Beatrix egyetemi docens
Valószínűségi változók együttes eloszlása
2. Regresszióanalízis Korreláció analízis: milyen irányú, milyen erős összefüggés van két változó között. Regresszióanalízis: kvantitatív kapcsolat meghatározása.
Dr. Varga Beatrix egyetemi docens
Előadás másolata:

Kvantitatív Módszerek 4. Korreláció- és regressziószámítás I. Dr. Kövesi János

Determinisztikus és sztochasztikus kapcsolatok A korreláció- és regresszió- számítás során arra keressük a választ, hogy egy adott állapot milyen tényezők hatására jött létre, az egyes tényezők milyen mértékben befolyásolják a jelenség alakulását, a tényezők milyen szoros kapcsolatban vannak egymással. A korrelációs és regressziós számítás a kapcsolatot jellemzi, de semmit nem mond az oksági viszonyról. Tehát két, vagy több változó közötti sztochasztikus kapcsolat megállapításából nem következik, hogy a változók oksági összefüggésben vannak, azaz, hogy egyik tényező változása oka a másik tényező változásának. Az oksági kapcsolatot csak alapos szakmai és statisztikai vizsgálattal lehet megállapítani.

A kapcsolat szemléltetése 3 2 1 - P o z i t í v k r e l á c ó R S q = 6 . 5 % Y 8 E + 9 X - 3 2 1 N e g a t í v k o r l á c i ó Y = 5 . 7 E 6 4 8 X R S q 9 % - 3 2 1 4 N e m l i n á r s k o c ó Y = . 9 5 8 + 6 7 X * R S q % - 2 1 3 N i n c s k o r e l á ó Y = 7 . 4 E + 8 X R S q % 3 2 1 - P o z i t í v k r e l á c ó R S q = 6 . 5 % Y 8 E + 9 X - 3 2 1 N e g a t í v k o r l á c i ó Y = 5 . 7 E 6 4 8 X R S q 9 % - 2 1 3 N i n c s k o r e l á ó Y = 7 . 4 E + 8 X R S q % - 3 2 1 4 N e m l i n á r s k o c ó Y = . 9 5 8 + 6 7 X * R S q %

Az előjel–korrelációs együttható Feladat: 14 év adatai alapján vizsgáljuk meg az 1 ha szántóterületre vonatkoztatott műtrágya felhasználás (xi=kg/ha) és az évi búza termés átlagok (yi=q/ha) közötti kapcsolatok jellegét és szorosságát. 71 , 14 2 12 = - e r

A (lineáris) regresszió és korreláció A regresszió számítás feladata a változók közötti összefüggés jellegének meghatározása. Ennek során a pontdiagramos ábrázolással érzékeltetett tendenciát valamilyen analitikusan ismert függvénnyel próbáljuk leírni. A regressziós függvényt a legkisebb négyzetek elve és módszere alapján határozzuk meg. Ez azt a követelményt támasztja, hogy az adott függvénytípust (egyenes, parabola, exponenciális, stb.) használata során a összeg minimális legyen. Az eltérések (rezidiumok) négyzeteinek összege jól jellemzi a ponthalmaz és a regressziós vonal kölcsönös viszonyát.

A (lineáris) regresszió és korreláció A korrelációs együttható értéke nulla, ha X és Y függetlenek. Ez fordítva általában nem igaz: abból, hogy két valószínűségi változó korrelációs együtthatója nulla, nem feltétlenül következik, hogy a két változó független is egymástól (kivétel, ha X és Y együttes eloszlása normális). Ha a két változónál csak azt tudjuk, hogy r(x,y)=0, akkor korrelálatlannak nevezzük őket.

A (lineáris) korrelációs együttható Az elméleti korrelációs együtthatót a mintabeli, tapasztalati korrelációs együtthatóból becsülhetjük: ahol: és

Feladat: Számítsuk ki a mintapéldában szereplő változó korrelációs együtthatóját! Emlékeztetőül: az előjel – korrelációs együttható értéke 0,71 volt.

Auto- és keresztkorreláció idősorok elemzése 1 2 3 4 5 6 7 8 9 10 -1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0 Autocorrelation 0,09 0,05 -0,06 -0,01 -0,05 -0,02 0,01 0,10 0,02 0,08 3,09 1,68 -2,11 -0,22 -1,65 -0,53 0,45 3,39 0,54 2,85 9,58 12,45 17,02 17,07 19,90 20,19 20,40 32,36 32,67 41,30 Lag Corr T LBQ BUX napi adatok autokorrelációja '94 -'99