Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 1/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári.

Slides:



Advertisements
Hasonló előadás
W  és Z 0 bozonokatkeresünk az LHC CMS detektorában. A nagyon szerencsések pedig akár egy Higgs-jelölttel is találkozhatnak! Remélem izgalmas kaland.
Advertisements

2011.Október 03. Szent László ÁMK, Baja
Budapesti Műszaki Fősikola Fizika II. Horváth Árpád
2. Kölcsönhatások.
Magfizikai kísérletek és a chicagoi fél watt
1 Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium CERN: Tudomány és technológia gyorsítója.
Az Üllői úttól a Mont Blanc-ig
Számítógépes mérések fizikai kísérletekben Dr. Almási Gábor Pécsi Tudományegyetem Fizikai Intézet Fizikai Informatika Tanszék.
Elektron hullámtermészete
2010. augusztus 16.Hungarian Teacher Program, CERN1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by OTKA MB
Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium Bemutatkozik a CERN 05 Novembre 2003.
Gigamikroszkópok Eszközök az anyag legkisebb alkotórészeinek megismeréshez Trócsányi Zoltán.
2. Kölcsönhatások.
Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 1/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári.
Készítette: Szakácsi Csaba Kapcsolódó tantárgy: Kémia
Budapesti Műszaki és Gazdaságtudományi Egyetem
Az első atombombák, Hiroshima, Nagaszaki
A mikrorészecskék fizikája
A mikrorészecskék fizikája 2. A kvarkanyag
Elektrotechnika 7. előadás Dr. Hodossy László 2006.
12. előadás Elektrosztatikus és mágneses mezők Elektronfizika
Dr. Csurgai József Gyorsítók Dr. Csurgai József
LHC – a harmadik évezred részecskefizikája Vesztergombi György Paks Május 31.
3. Gyorsítók CERN(Genf): légifelvétel. A gyorsító és a repülőtér.
Következik a Z-bozonnal történő részletes ismerkedés. Ez lesz a délutáni méréseik tárgya is ! Most igazán tessék figyelni és bátran kérdezni is ! Lesz.
1 A napszélben áramló pozitív töltésű részecskék energia spektruma.
6. Nemzetközi Részecskefizikai Diákműhely MTA KFKI Részecske- és Magfizikai Kutatóintézet (RMKI) Budapest, március 3. A rendezvény szervezői:
3. Gyorsítók.
2. Kölcsönhatások Milyen „kölcsönhatásokra” utalnak a képen látható jól ismert események? A nagyon „tudományos” elnevezésük: Gravitációs Elekromágneses.
2. Kölcsönhatások.
Bose-Einstein korrelációk Novák Tamás Radboud University Nijmegen Károly Róbert Főiskola, Gyöngyös Július 18.
2. A KVANTUMMECHANIKA AXIÓMÁI 1. Erwin Schrödinger: Quantisierung als Eigenwertproblem (1926) 2.
Veszprémi Viktor ATOMKI, Debrecen Supported by OTKA MB
Veszprémi Viktor Wigner Fizikai Kutatóközpont OTKA NK81447
Title Zoltán Fodor KFKI – Research Institute for Particle and Nuclear Physics CERN.
Kérdésekre válaszok Zoltán Fodor KFKI – Research Institute for Particle and Nuclear Physics CERN.
Nukleáris képalkotás - detektorok, módszerek és rendszerek
Rutherford kísérletei
Az atom szerkezete Készítette: Balázs Zoltán BMF. KVK. MTI.
Bemutatjuk a híres/fontos W  és Z 0 Bozonokat Sheldon Glashow Steven WeinbergAbdus Salam Ők jósolták meg elméletileg. Nobel díj: 1979 Ők pedig felfedezték.
2. Kölcsönhatások.
Az atommag szerkezete és mesterséges átalakítása
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Integrált mikrorendszerek II. MEMS = Micro-Electro-
Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke MIKROELEKTRONIKA, VIEEA306 Integrált mikrorendszerek:
A betatron Az időben változó mágneses tér zárt elektromos erővonalakat hoz létre. A térben indukált feszültség egy ott levő töltött részecskét (pl. elektront)
Nagyságrendi becslések és oktatásuk a természettudományokban Timár Gábor tanszékvezető egyetemi docens ELTE Geofizikai és Űrtudományi Tanszék Eötvös Loránd.
Az elektromos áram.
Az antianyag. Hungarian Teacher Program, CERN, 2006 augusztus 25. Debreczeni Gergely, CERN IT/Grid Deployment Group 2 Miről szól ez az előadás ? Mi az.
W  és Z 0 bozonokatkeresünk az LHC CMS detektorában.
Atommag és részecskefizika
2. Kölcsönhatások.
W  és Z 0 bozonokatkeresünk az LHC CMS detektorában. A nagyon szerencsések pedig akár egy Higgs-jelölttel is találkozhatnak! Remélem izgalmas kaland.
Globális változások-környezeti hatások és válaszok
Készült a HEFOP P /1.0 projekt keretében
A mozgás egy E irányú egyenletesen gyorsuló mozgás és a B-re merőleges síkban lezajló ciklois mozgás szuperpoziciója. Ennek igazolására először a nagyobb.
Magyar CERN. ALICE a TeV-ek országában ALICE a TEVÉK országában.
Az ősrobbanás Szebenyi Benő.
A fény kettős természete. Az elektron hullámtermészete.
A „tér – idő – test – erő” modell a mechanikában A mechanika elvei Induktiv úton a Maxwell-egyenletekig Áram – mágneses tér Töltés – villamos tér A villamos.
PPKE-ITK I.Házi Feladat Megoldásai Matyi Gábor Október 9.
Horváth Árpád, BMF ROIK A Világegyetem kohói Horváth Árpád, BMF ROIK
Elemi részecskék, kölcsönhatások
Az atommag alapvető tulajdonságai
05 Novembre év a részecskefizika kutatásban Európai Nukleáris Kutatási Szervezet Európai Részecskefizikai Laboratórium.
Úton az elemi részecskék felé
Részecskefizika Budapesti Műszaki Fősikola Fizika II. Horváth Árpád.
Gyorsítók Veszprémi Viktor ATOMKI, Debrecen
FAZEKAS ANDRÁS ISTVÁN PhD c. egyetemi docens
I. Az anyag részecskéi Emlékeztető.
W és Z0 bozonokat keresünk az LHC CMS detektorában.
Előadás másolata:

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 1/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Óriás kísérleti eszközök gyorsítók (és detektorok) gyorsítók (és detektorok) Dr. Sükösd Csaba egyetemi docens, tanszékvezető

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 2/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Tartalom 1.Részecskegyorsítás, de minek? 2.Nagy energia, de minek? 3.Részecskegyorsító fő részei és három alapelve 4.Lineáris gyorsító, SLAC 5.Ciklotron 6.Nagy energiák problémái és a gyorsítógyűrű 7.A CERN gyorsítóinak története 8.A LEP és az LHC, és detektoraik 9.Kitekintés

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 3/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Részecskegyorsítás, de minek? Hol használnak részecskegyorsítókat? •Alapkutatás (nagy energiájú fizika, magfizika, szilárdtestfizika, biológia stb.) •Elektron-nyaláb hegesztés (ipar) •Félvezetőgyártás (ipar) •Elektronmikroszkóp (rengeteg alkalmazás) •Gáz-lézerek és szabadelektron-lézerek meghajtása •Műanyagok térhálósítása (vegyipar) •Orvosi alkalmazások (radioizotópok előállítása, közvetlen besugárzások, sterilizálás stb.) •Élelmiszerek besugárzása (mezőgazdaság) •Röntgen-csövek, és Rtg-sugárzás felhasználása (ipar, gyógyítás stb.) •Elektron- és ionszórásos felületvizsgálatok (ipar) •Fúziós berendezések, plazmafűtés •Radioaktív melléktermékek transzmutációja... stb.

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 4/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Miért kell egyre nagyobb energia? 1) Felbontóképesség ~  Az anyag finom részleteinek megismeréséhez egyre kisebb  kell. De: (de Broglie hullámhossz) nagy lendület kell! Nagy lendület Nagy tömeg Nagy sebesség (csak akkor jó, ha „elemi részecske”) Példák: •Elektronmikroszkóp felbontóképessége jobb, mint a fénymikr.-é •Rutherford-kísérletben  -részecske hullámhossza~ m (elemi?) •Nagy energiájú elektronokkal meglátni a kvarkokat a protonban gyorsítók

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 5/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Miért kell egyre nagyobb energia? 2) Új részecskék keltése (részecskefizika) Ha m 0 c 2 –nél nagyobb energiát koncentrálunk, akkor egy m 0 nyugalmi tömegű részecske létrejöhet. Compton-hullámhossz: Ennél rövidebb  már létre tudja hozni a részecskét, ezért egy m 0 tömegű részecske helyét legfeljebb ilyen pontossággal lehet meghatározni ! Ebből: azaz

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 6/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Részecskegyorsító főbb részei: Otthon is van részecskegyorsítód! Három alapelv 1) Gyorsítás:  U potenciálkülönbségen áthaladó részecske kinetikusenergia- változása: 1) Gyorsítás:  U potenciálkülönbségen áthaladó részecske kinetikusenergia- változása: 1 eV = 1,6∙ [Cb]∙ 1 [V] = 1,6∙ [J] (ekkora energiát kap egy elektron/proton 1 V feszültség-különbség hatására) 1 GeV=10 9 eV, 1 TeV=10 12 eV giga-tera-

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 7/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba ) Részecskenyaláb „terelése”: elektromágneses (Lorentz) erő: 2) Részecskenyaláb „terelése”: elektromágneses (Lorentz) erő: 3) Faraday „kalitka” 3) Faraday „kalitka” Fémdoboz belsejében az Fémdoboz belsejében az elektromos térerősség: E=0 elektromos térerősség: E=0 elektromostérerősség mágnesesindukció részecskesebessége

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 8/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Első alkalmazás: lineáris gyorsító Gyorsítás: csak az elektródok közötti térben (belül: Faraday-kalitka) Az elektródok hossza változik, hogy mindig jó fázisban érjék el a gyorsítórést az egyre nagyobb sebességű részecskék. Relativisztikus tartományban v~c, a sebesség nem nő tovább állandó méretű elektródok üregrezonátor hozható létre

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 9/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba SLAC Stanford Linear ACcelerator Hossza: 3,2 km Részecskék: elektron, pozitron E~ 50 GeV 3 Nobel-díj: 1976: J/  részecske (c-kvark) 1990: kvarkok a p és a n belsejében 1995:  - lepton. A világ legnagyobb lineáris gyorsítója A részecskék „csomagokban” gyorsulnak. Fázisfókuszálás (a csomaghoz képest) képest)

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 10/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Homogén mágneses térben, a B-re merőlegesen belépő részecskékre: centrip. erő = Lorentz erő Ebből kapjuk: = állandó, (amíg m is állandó) Második alkalmazás: ciklotron Gyorsító elektródán belül „Faraday-kalitka” Gyorsítás: az elektródák között (F ┴ v, körpálya)

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 11/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Orvosi alkalmazású ciklotron (Orsay, Fr.ország) Ciklotronból a levegőbe kilépő protonsugár (R a ciklotron sugara) Ciklotronnal előállítható maximális energia:

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 12/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Nagy energiáknál két probléma: 1) De az energia növekedésével m is nő (relativisztikusan) Két lehetséges megoldás: B növelése (relativisztikus ciklotron)  csökkentése (szinkrociklotron) 2) Számpélda: Gyorsítsunk protonokat E max = 50 GeV energiára! Legyen B = 3 T Mekkora sugarú ciklotronra lenne szükség? Relativisztikus számolással kapjuk R ~ 52 m A mágnespofák tömege ~45000 t! A súlyához még a mágneses vonzás is hozzájárul. És ezt nem lehet belül alátámasztani!!! megoldás!

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 13/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Gyorsítógyűrű! Állandó pályasugáron tartani, tehát a gyorsítás során B növelése. Gyorsító (és tároló) gyűrű felépítése Működési fázisok (A rajz nem teljesen jó, hiszen a pálya csak ott görbül, ahol hajlító mágnes van!) (ehhez a lineáris gyorsító „körbehajlításával” is eljuthatunk)

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 14/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba A CERN nagy gyorsítóinak története 1959: Proton szinkrotron (PS) 28 GeV protonok 28 GeV protonok föld alatti elhelyezés föld alatti elhelyezés kerülete 628 m kerülete 628 m

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 15/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba A CERN nagy gyorsítóinak története 1976: Super Proton Szinkrotron (SPS) 400 GeV protonok 400 GeV protonok föld alatti elhelyezés föld alatti elhelyezés kerülete 6 km kerülete 6 km Lineáris gyorsító és „preinjektor”

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 16/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba A CERN nagy gyorsítóinak története 1981: Carlo Rubbia javaslata: ütközőnyalábok protonok és antiprotonok protonok és antiprotonok „Antiproton accumulator” „Antiproton accumulator” 1984: Antiproton Collector 1984: C.Rubbia és Van der Meer felfedezik a Z 0, majd a W részecskéket

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 17/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba A CERN nagy gyorsítóinak története 45 GeV elektron-pozitron tárológyűrű tárológyűrű LEP

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 18/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba A CERN gyorsítói légifényképre rajzolva

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 19/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba A LEP (Large Electron-Positron Collider) néhány adata: • Maximális energia: 50 GeV (elektron) ütközésben: 100 GeV (m Z  c 2 =91,25 GeV) ütközésben: 100 GeV (m Z  c 2 =91,25 GeV) • 50 – 150 méterrel a felszín alatt fúrt alagútban van (volt). • Kerülete: 27 km (Franciaország és Svájc határán is átlép) • 4 elektron-, 4 pozitroncsomag egymással szemben • 250 milliárd részecske/csomag • fordulat/s

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 20/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Az ALEPH detektor építés alatt Négy hatalmas detektor (egyenként kb tonna)

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 21/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba További tervek: Large Hadron Collider (LHC) • Jelenleg építés alatt (2008-ban indul!) • A LEP alagútjában • szupravezető mágnesek (8,2 T!!) • Első lépésben proton-proton ütközés, • Később akár ólom-ólom ütközés is (!!) • Energia: 7000 GeV/proton, ütközésben GeV(!!!) ütközésben GeV(!!!) • Egy csomagban 100 milliárd részecske •Négy nagy detektor: ALICE, ATLAS, CMS, LHC-B • Négy nagy detektor: ALICE, ATLAS, CMS, LHC-B A CMS detektor építés alatt

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 22/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 23/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Az LHC alagútjában

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 24/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Az ATLAS detektor

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 25/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Sokat tudunk már, de nagyon sok a nyitott kérdés is! 1) Miért éppen 3 részecske-család van? (kvarkoknál, és leptonoknál is) 2) Miért 4 féle kölcsönhatás van? 3) Miért olyan különbözőek ezek a kölcsönhatások? 4) Miért akkorák a részecskék tömegei, mint éppen amekkorák? 5) Miért nincs antianyag az Univerzumban, amikor a törvények nagyon szimmetrikusak? Az LHC (és a CERN) ezek megválaszolásában segíthet! 1)Talán megtalálható lesz a feltételezett Higgs-részecske, amely tömeget ad a részecskéknek 2)Talán még nagyobb energiákon sikerül a kölcsönhatások további egyesítése (SUSY – szuperszimmetria), GUT, TOE 3)Talán megtalálható az anyag-antianyag aszimmetria igazi oka

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 26/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Lehet, hogy ezekre választ kapunk az LHC működésekor Lehet, hogy ezekre választ kapunk az LHC működésekor… … de az is lehet, hogy nem… DE! Egészen biztos, hogy a Természet még tartogat olyan meglepetése- ket, amelyekre nem is számítunk, és amelyekre jelenleg nem is gon- dolunk! A Természet megismerésének évezredes kalandjában a CERN-nek fontos szerepe van!

Budapesti Műszaki és Gazdaságtudományi Egyetem, Nukleáris Technika Tanszék 27/27 Óriás kísérleti eszközök Gyorsítók és detektorok Középiskolai Fizikatanári Ankét Békéscsaba Köszönöm a megtisztelő figyelmet!