Automatikai építőelemek 5.

Slides:



Advertisements
Hasonló előadás
Szimmetriák szerepe a szilárdtestfizikában
Advertisements

Kauzális modellek Randall Munroe.
A TUDOMÁNYOS KUTATÁS MÓDSZERTANA
2.1Jelátalakítás - kódolás
Az úttervezési előírások változásai
Fizika II..
Számítógépes Hálózatok
Profitmaximalizálás  = TR – TC
A járműfenntartás valószínűségi alapjai
Szenzorok Bevezetés és alapfogalmak
Végeselemes modellezés matematikai alapjai
A magas baleseti kockázatú útszakaszok rangsorolása
Szerkezetek Dinamikája
MÉZHAMISÍTÁS.
Hőtan BMegeenatmh 5. Többfázisú rendszerek
BMEGEENATMH Hőátadás.
AUTOMATIKAI ÉPÍTŐELEMEK Széchenyi István Egyetem
Skandináv dizájn Hisnyay – Heinzelmann Luca FG58PY.
VÁLLALATI Pénzügyek 2 – MM
Hőtan BMEGEENATMH 4. Gázkörfolyamatok.
Szerkezetek Dinamikája
Összeállította: Polák József
A TUDOMÁNYOS KUTATÁS MÓDSZERTANA
Csáfordi, Zsolt – Kiss, Károly Miklós – Lengyel, Balázs
Tisztelt Hallgatók! Az alábbi példamegoldások segítségével felkészülhetnek a 15 pontos zárthelyi dolgozatra, ahol azt kell majd bizonyítaniuk, hogy a vállalati.
J. Caesar hatalomra jutása atl. 16d
Anyagforgalom a vizekben
Kováts András MTA TK KI Menedék Egyesület
Az eljárás megindítása; eljárási döntések az eljárás megindítása után
Melanóma Hakkel Tamás PPKE-ITK
Az új közbeszerzési szabályozás – jó és rossz gyakorlatok
Képzőművészet Zene Tánc
Penicillin származékok szabadgyökös reakciói
Boros Sándor, Batta Gyula
Bevezetés az alvás-és álomkutatásba
Kalandozások az álomkutatás területén
TANKERÜLETI (JÁRÁSI) SZAKÉRTŐI BIZOTTSÁG
Nemzetközi tapasztalatok kihűléssel kapcsolatban
Gajdácsi József Főigazgató-helyettes
Követelmények Szorgalmi időszakban:
Brachmann Krisztina Országos Epidemiológiai Központ
A nyelvtechnológia eszközei és nyersanyagai 2016/ félév
Járványügyi teendők meningococcus betegség esetén
Kezdetek októberében a könyvtár TÁMOP (3.2.4/08/01) pályázatának keretében vette kezdetét a Mentori szolgálat.
Poszt transzlációs módosulások
Vitaminok.
A sebész fő ellensége: a vérzés
Pharmanex ® Bone Formula
Data Mining Machine Learning a gyakorlatban - eszközök és technikák
VÁLLALATI PÉNZÜGYEK I. Dr. Tóth Tamás.
Pontos, precíz és hatékony elméleti módszerek az anion-pi kölcsönhatási energiák számítására modell szerkezetekben előadó: Mezei Pál Dániel Ph. D. hallgató.
Bevezetés a pszichológiába
MOSZKVA ZENE: KALINKA –HELMUT LOTTI AUTOMATA.
Bőrimpedancia A bőr fajlagos ellenállásának és kapacitásának meghatározása Impedancia (Z): Ohmos ellenállást, frekvenciafüggő elemeket (kondenzátort, tekercset)
Poimenika SRTA –
Végeselemes modellezés matematikai alapjai
Összefoglalás.
Az energiarendszerek jellemzői, hatékonysága
Varga Júlia MTA KRTK KTI Szirák,
Konzerváló fogászat Dr. Szabó Balázs
Outlier detektálás nagyméretű adathalmazokon
További MapReduce szemelvények: gráfproblémák
Ráhagyások, Mérés, adatgyűjtés
Járműcsarnokok technológiai méretezése
Grafikai művészet Victor Vasarely Maurits Cornelis Escher.
VÁLLALATI PÉNZÜGYEK I. Dr. Tóth Tamás.
RÉSZEKRE BONTOTT SOKASÁG VIZSGÁLATA
Az anyagok fejlesztésével a méretek csökkennek [Feynman, 1959].
Bevezetés a színek elméletébe és a fényképezéssel kapcsolatos fogalmak
Minőségmenedzsment alapjai
Előadás másolata:

Automatikai építőelemek 5. Hőmérsékletfüggő ellenállások Félvezető ellenállás hőmérők Ellenállás függése a hőmérséklettől: Félvezető ellenállás karakterisztikája ahol: „a” - anyagállandó, „b” - energiaállandó és „T” = abszolút hőmérséklet. A „b” értéke a következő módon számítható:

Automatikai építőelemek 5. Hőmérsékletfüggő ellenállások Félvezető ellenállás hőmérők 3.46. ábra. Termisztorok kialakítása Félvezető ellenállás-hőmérő anyagai: - nehézfémek ötvözetei, oxidjai - Si és Ge tiszta, vagy szennyezett formájában Termisztorok A gyakorlati kialakításukra mutatnak példát az ábrák 3.48. ábra. Termisztorok kialakítása 3.47. ábra. Termisztorok kialakítása

Automatikai építőelemek 5. Hőmérsékletfüggő ellenállások Félvezető ellenállás hőmérők Látható hogy a termisztort az átfolyó áram fűti, így ez a típus felhasználható olyan folyamatok vizsgálatára, ahol hőcsere zajlik (pl. áramlásmérésnél), amely folyamatot termoanemometriának nevezzük. A termisztorok jellemző adatai: - ellenállása 25 °C–on néhány száz ohm-tól néhány kohmig terjed, - az ellenállása 80 °C-on a 20 °C-on mért érték 5/8-ad része, Fő problémája, hogy csak nagy szórással készíthetők ezért cseréjük során ismételt hitelesítést kell végrehajtani. A mérési tartománya -200…200 °C között lehetséges. A termisztorok előnyei: - a viszonylag nagy érzékenység, - kis időállandó - jó mechanikai tulajdonságok. Hátrányai: - a nemlineáris karakterisztika - nagy gyártási szórás - magas hőmérsékleten nem használható. Termisztorok kialakítása

Automatikai építőelemek 5. Hőmérsékletfüggő ellenállások Félvezetős ellenállás hőmérők A félvezetős hőmérsékletérzékelő ellenállások három fajtája terjedt el: negatív karakterisztikájú (NTK) pozitív karakterisztikájú (PTK) terjedési ellenállás alapú szilícium hőmérsékletérzékelők Az NTK (negatív hőmérsékleti együtthatójú) termisztorok fémoxidok keverékéből szintereléssel készülnek. Ez a technológia lehetővé teszi a kiviteli formák sokféleségét, az olcsó, nagy tömegű gyártást. Többféle kivitelben készülnek: gyöngytermisztorok, tárcsatermisztorok, rúdtermisztorok, morzsatermisztorok stb. Az egyes termisztorfajták között, de a fajtákon belül is jelentős méreteltérések vannak. A gyöngytermisztorban például gombostűfejnyi nagyságú termisztor massza van, többnyire védő üvegcsőbe forrasztva. A tárcsatermisztorok különböző átmérőjű és vastagságú oxidpasztillák, amelyek kivezetéssel, védőlakk burkolattal vagy fémszerelvénnyel kiegészítve készülnek. A rúdtermisztorok hossza és átmérője is tág határok között változhat. A morzsatermisztorok ónozott kontaktusfelületű, apró hasáb alakú alkatrészek, amelyeket főleg hibrid integrált, és felületen szerelt (SMD) áramkörök használnak fel.

Automatikai építőelemek 5. Hőmérsékletfüggő ellenállások Félvezető ellenállás hőmérők A termisztorok viselkedését jelleggörbéik ismertetésével lehet követni. A legfontosabb az ellenállás-hőmérséklet jelleggörbe, amely a különböző hőmérsékleteken mért terheletlen ellenállások összefüggése. Az NTK termisztorok ellenállását hőmérsékleti hatással kétféle módon lehet befolyásolni: a környezeti hőmérséklet változtatásával termisztorba betáplált teljesítmény (az átfolyó áram) növelésével. . Különböző típusú hőmérők jelleggörbéi a jelű: platina ellenállás hőmérő b jelű: NTK termisztor c jelű: PTK termisztor d jelű: terjedésiellenállás alapú szilícium érzékelő A szinterelési eljárás melegítés által előidézett atomi diffúzió. A hőbevitel elősegíti az anyag atomi vagy ionos komponenseinek migrációját. Gyakran az adalék komponensek megváltozott újraeloszlása eredményezi a szinterelt anyagok termikus, mechanikus vagy elektromos tulajdonságainak jelentős megváltozását.

Automatikai építőelemek 5. Hőmérsékletfüggő ellenállások Félvezető ellenállás hőmérők A termisztorok fontos paramétere még a termikus időállandó. A termisztor saját, és szerelvényeinek tömege, hőszigetelő tulajdonságai miatt csak késéssel reagál a hőmérsékletét megváltoztató hatásokra. A termikus hőtehetetlenségét a termikus időállandó jellemzi: (t th). Az időállandó azt az időt jelenti, amely szükséges ahhoz, hogy a termisztor és a környezete közötti hőmérsékletkülönbség a 63,2%-ot elérje. Az időállandó nagyságát a termisztor hőtehetetlenségén kívül a környezeti hatások is befolyásolják. Emiatt nem szükségképpen azonos a lehűlési és a felmelegedési időállandó értéke. A katalógusokban megadott érték nyugvó levegőben mért lehűlési idő, amely néhány másodperctől száz másodpercig terjedhet. Szabályozástechnikai célokra használt NTK termisztoroknál az áramkör működése szempontjából az a döntő, hogy mennyi idő alatt ér el a kikapcsolt termisztor ellenállása egy olyan értéket, amelynél a folyamatot újra lehet indítani. Ebben az esetben hasznos tájékoztatást ad az úgynevezett feléledési idő. A feléledési idő az az időtartam, amennyi idő ahhoz szükséges, hogy a megengedett maximális terheléssel üzemelő, a környezetével termikus egyensúlyban lévő NTK termisztor kikapcsolása után arra a hőmérsékletre hűljön le, amelyen ellenállásának értéke eléri a szobahőmérsékleten mért ellenállása értékének felét.

Automatikai építőelemek 5. Hőmérsékletfüggő ellenállások Félvezető ellenállás hőmérők A pozitív hőmérsékleti tényezőjű (PTK) termisztorok A pozitív hőmérsékleti tényezőjű (PTK) termisztorok alapanyaga polikristályos báriumtitanát, amelyet kis mennyiségű fémdioxid adalékok (stroncium és titánoxidok) tesznek félvezetővé. Működési elve szerint a ferromágneses anyag Curie-pontja közelében elveszíti mágneses tulajdonságát és paramágnesessé alakul, ez egy bizonyos hőmérséklet tartományban következik be. 30 °C – 50 °C a felső határ az alsó pedig változó. Nevét Pierre Curie Nobel-díjas francia fizikusról kapta. A PTK termisztorok ellenállása frekvenciafüggő, az impedanciája csökken a frekvencia növekedésével.

Automatikai építőelemek 5. Hőmérsékletfüggő ellenállások Félvezető ellenállás hőmérők Terjedési ellenállás felépítése A terjedési ellenállás elvén alapuló eszközök Működésének alapja, hogy a szilíciumkristály egy bizonyos hőmérséklettartományban a hőmérséklet növekedésével növeli a töltéshordozók megkötöttségét, ami az ellenállás növekedését okozza. Ezt az ellenállást a kristály előlapján elhelyezett hegyes érintkező és a nagy felületen fémmel bevont hátlap között mérik. Az elrendezés tulajdonképpen egy kondenzátor, ahol a dielektrikumnak hőmérsékletfüggő ellenállása van. Amíg a hegyes érintkező „d” csúcsátmérője a kristály „D” vastagságához és a fémbevonat felületéhez képest kicsi, addig az ellenállás értéke csak a fajlagos ellenállástól és a csúcssugártól függ. Enyhén görbült jelleggörbével és pozitív hőmérsékleti együtthatóval rendelkezik 150 °C-nál nagyobb hőmérsékleten szabad töltéshordozók képződnek és vezetővé válik. Ellenállás- hőmérséklet karakterisztika

Automatikai építőelemek 5. Hőmérsékletfüggő ellenállások Félvezető ellenállás hőmérők A terjedési ellenállás elvén alapuló eszközök Nagy előnye a termisztorokkal szemben: - hasonló meredekség mellett linearitása lényegesen jobb olcsóbb ezt az biztosítja, hogy planáris technológiával gyártható a hozzávezetések helyének megváltoztatásával az ellenállás értéke széles határok között megváltoztatható.   ρ - linearis függvény a –50 … +120 °C tartományban. Érzékenysége ~ 0,7%/°C

Automatikai építőelemek 5. Elektrolitos átalakítók Elektrolitok a savak, sók és lúgok vizes oldatai, amelyek vezetők. Az elektrolitok többféle mennyiséget, így elmozdulást, szögelfordulást, hidrogénion koncentráció változást alakít át ellenállássá. A elektrolit ellenállása: Elektrolitos átalakító blokkvázlata ahol: „κ” - elektrolit fajlagos vezetőképessége, „C” - cellaállandó, amely a geometriai elrendezéstől függ. Kétféle módon változhat az ellenállás értéke: - Változik a cellaállandó, amely akkor következik be, ha az átalakítót elmozdulásra vagy szögelfordulásra használjuk. Ekkor a fajlagos vezetőképesség állandó. - Változik a fajlagos vezetőképesség, amely akkor következik be, ha változik az ionkoncentráció. Ekkor változatlan a cellaállandó.

Automatikai építőelemek 5. Elektrolitos átalakítók Az elektrolitos jelátalakítók fő hibája, hogy a fajlagos vezetőképessége erősen hőmérsékletfüggő, helyzet és rázás érzékeny. Előnye viszont, hogy egyszerű felépítésű, kis méret és kis mérőteljesítmény. Elektrolitos átalakítók elvi kialakítása

Automatikai építőelemek 5. Fotóellenállásos átalakítók A fotóellenállások a megvilágítás változásait alakítják át ellenállás változássá. A működési elvének alapját a fotoemisszió jelensége képezi, amelynek lényege, hogy +elektronok lépnek ki. A másik alapvető fizikai hatás az ún. fotokonduktív hatás. Itt a félvezető ellenállása változik meg a fény hatására, mert töltések szabadulnak fel a félvezetőben. - Fotoemisszión alapuló eszközök a fotocellák. Fotocella felépítése ahol: „I” - fotocella árama, „c” - arányossági tényező, „Φ” – fényfluxus. A fotocellás átalakító karakterisztikája lineáris, az átfolyó áram – így a kilépő elektronok száma is – a megvilágítástól függ. A kilépő elektronok száma még függ a fény hullámhosszától és ettől függ a „c” arányossági tényező is. A katód anyaga ezüstoxidra felvitt céziumréteg, vagy bizmutoxidra felvitt ezüst-cézium ötvözet, stb Működése a látható fénytől az ultraibolya tartományig minden tartományban lehetséges. Az átfolyó áram μA nagyságú. Kétféle fotocellát különböztetünk meg; vákuum és gáztöltéses változatot.

Automatikai építőelemek 5. Fotóellenállásos átalakítók Karakterisztikái az alábbi ábrákon. Hibaforrást jelent, hogy van ún. sötétárama – vagyis teljesen sötétben is folyik áram illetve kis áramok miatt zajos. Előnyei: üzembiztos (régebben ez volt az egyetlen használható eszköz). Hátrányai közé tartozik a kis érzékenység, viszonylag nagy méret, kis sávszélesség és a nagy tápfeszültség.

Automatikai építőelemek 5. Fotóellenállásos átalakítók A fotóellenállások működése a fotokonduktív jelenségen alapul, amelynek alapja az ún. belső vezetés. Anyaga lehet szelén, germánium, szilícium, ólomszulfid stb. A fotóellenállás főbb tulajdonságait a táblázat tartalmazza: Se Ge Si Ólomszulfid Kadmiumszul-fid Átlagos érzékenység mA/lumen 0,1…3 30 0,06 3 2…3 Érzékenység hőmérséklet függése [% / oC] -0,4 - -1,5 -0,2 Sötétellenállás [Mohm] 0,01…10 0,1…10 1…1000

Automatikai építőelemek 5. Fotóellenállásos átalakítók - a, Szelén (Se): Széles hullámhossztartomány, jelleggörbe nemlineáris, tehetetlensége elég nagy. - b, Kadmium-Szulfid (CdS): Napjaink leggyakrabban alkalmazott anyaga, amelynek monokristályos és polikristályos változata létezik. Az előbbi szűkebb, az utóbbi szélesebb tartományban mutat jelentősebb érzékenységet. A polikristályos változat jó fedésben van az emberi szem hullámhossz érzékenységével. Karakterisztikája széles tartományban lineáris. Hátránya, hogy kis megvilágításnál elég nagy az időállandója, tehát néhány száz Hz-nél nagyobb frekvenciával nem modulálhatóak. - c, Kadmium-Szelenid (CdSe) : Az infravörös tartományban mutatnak nagy érzékenységet. Meredekségük a CdS-hez képest 5…10 – szeres. Viszonylag nagy a hő-mérséklet függése. Az átviteli görbéje nemlineáris. A tehetetlenségi időállandója elfogadható értékű. d, Ólom-Szulfid: Többnyire az ipari méréstechnikában alkalmazzák, mert gyors működésűek. Spektrális érzékenysége főként az infravörös tartományba esik. Az ólomszulfidnak van egy különleges tulajdonsága, a hőmérséklet érzékenysége nem csak az amplitúdóra vonatkozik, hanem a hullámhosszra is kihat, ezért pirotechnikai alkalmazásoknál termosztátba kell helyezni. e, Ólom-Szelenid: Az infravörös tartomány legjobb tulajdonságú optikai érzékelője. Időállandója kicsi. A jelleggörbének két maximuma van. Infravörös tartományban van a legnagyobb érzékenysége.

Automatikai építőelemek 5. Fotóellenállásos átalakítók A fotóellenállás elvi vázlata és elvi kialakítások

Automatikai építőelemek 5. Fotóellenállásos átalakítók A fotóellenállások ellenállása annál kisebb, minél nagyobb a megvilágítás, ami azért lehetséges, mert a félvezető rétegben töltéshordozók száma a megvilágítás nagyságával nő. Minden fotóellenállás egy adott hullámhosszon éri el a legnagyobb érzékenységet. A hullámhossztól függő érzékenységet spektrális érzékenységnek nevezzük. Fotoellenállások spektrális érzékenysége

Automatikai építőelemek 5. Fotóellenállásos átalakítók Vannak olyan fotóellenállások, amelyek a kék, zöld, narancs, vagy éppen a vörös tartományban érzékelnek, de vannak olyanok is, amelyek az infra tartományban. Katalógusok megadják a sötét és világosellen-állás értékét. A világos ellenállást 1000 lx. megvilágításhoz adják meg. Előnyei: a kis méret, viszonylag nagy áram, elég nagy sászélesség és jó illeszthetőség a félvezető elektronikához, Hátrány? Nemlineáris karakterisztika. A rezisztencia-változási tényezőt a sötétellenállás és világos ellenállás arányával fejezzük ki. Az „s” index a sötét állapotra, az „e” index az üzemi feszültség melletti állapotra vonatkozik.

Automatikai építőelemek 5. Fotóellenállásos átalakítók Fotodiódák A fotodióda félvezető dióda, amelynek pn-átmenete jól átereszti a fényt. Gyártanak szilícium és germánium fotodiódát. Viszonylag széles tértöltési zóna keletkezik, és ha a tértöltési zónát nem éri fény, akkor csak nagyon kicsi zárási áram folyik. A zárási áram nagysága sötétben a zárótartományban normális Si-, ill. Ge-diódák zárási áramának felel meg. Fény hatására kötéseikből elektronok szabadulnak fel. Ahol a kristálykötés felszakad, egy szabad elektron és egy lyuk, azaz két szabad töltéshordozó keletkezik. A zárási áram néhány nagyságrenddel növekszik. A zárási áram és a beeső fény között lineáris összefüggés áll fenn Zárási áram beeső fény karaterisztika Fotodióda elvi felépítése

Automatikai építőelemek 5. Fotóellenállásos átalakítók A fotodiódák ezért különösen jól alkalmazhatók fénymérésre. A zárási áram a megvilágítás erősségének változásaival majdnem egyidejűleg változik. Fő jellemző adat a fényérzékenység. Azt adja meg, hogy az „IR” zárási áram hány nA-rel növekszik a megvilágítás 1 lx-os növekedése hatására. Megadják katalógusban: - maximális fényérzékenység „λES” hullámhosszát. - „fg” határfrekvencia „CS” zárórétegkapacitás „Id” sötétáram, amelyet meghatározott zárófeszültségre adnak meg. (AL ) még fontos jellemző a fényérzékeny felület nagysága A fotodiódákat a zárási áram és a megvilágítás erőssége közötti lineáris összefüggés miatt túlnyomórészt mérési célokra alkalmazzák. Nagyon kisméretűek lehetnek, így alkalmazásukkal nagy alkatrészsűrűség érhető el. A fotodiódák további alkalmazási területe a vezérlés- és szabályozástechnika. Ott, ahol a fotoellenállások nagy tehetetlenségük miatt nem építhetők be, fotodiódákat alkalmaznak. Ha a Si fotoelemeket és fotodiódákat összehasonlítjuk, sok hasonlóságot fedezhetünk fel közöttük. A fotodiódák fotoelemként is alkalmazhatók, ha nem helyezzük feszültség alá, így világítás hatására feszültséget képesek leadni, hatásfokuk azonban rosszabb, mint a fotoelemeké.

Automatikai építőelemek 5. Fotóellenállásos átalakítók Fototirisztorok A négyrétegű pnpn fotodióda (fototirisztor) felépítését, helyettesítő modelljét láthatjuk Fototirisztor elvi felépítése Telepet kapcsolva a kivezetésekre, a feszültség viszonyok olyanok lesznek, hogy a két külső átmenet nyitóirányban, míg a belső átmenet záróirányban polarizálódik. A belső átmenet nagy ellenállást képvisel mindaddig, amíg az alkalmazott feszültség el nem éri a letörési feszültséget. A két állapot: a szakadás és a rövidzár, valamint a kettő közötti éles átmenet, kapcsolókhoz teszi hasonlóvá a négyrétegű diódát, amely kikapcsolt állapotban végtelen nagy ellenállást és bekapcsolt állapotban rövidzárt jelent. A kétféle állapot közötti átbillenést nem csak a letörési feszültség elérésével lehet megvalósítani, hanem úgyis, hogy a tirisztorba töltéshordozókat injektálunk, amelyek hatására a belső átmenet megnyit. A fototirisztoroknál az injektálás fénnyel történik, az eszköz tehát fényjellel vezérelhető kapcsolónak fogható fel.

Automatikai építőelemek 5. Mágneses ellenállásos átalakító (mágnestérlemezek) (MDR) Olyan félvezető ellenállások, amelyeknek az ellenállása mágneses térrel vezérelhető. A térlemezek lehetnek: fémes típusúak (E típus) műanyag típusúak (K típus). Az E típus hordozóanyaga nagy permeabilitású ferromágneses anyag. Az ebből készült hordozóalapra szigetelőanyagot visznek fel, és ezen van a félvezető réteg. A K típus hordozóanyaga műanyag vagy kerámia. A hordozóra, amely rendesen kb. 0,1 mm vastagságú, indium-antimonid réteget visznek fel (szokásos rétegvastagság 25 µm). Az indium-antimonid nikkel-antimonid szálakat tartalmaz, amelyek nagyon jó vezetőképességűek. Mágnestérlemez felépítése

Automatikai építőelemek 5. Mágneses ellenállásos átalakító (mágnestérlemezek) (MDR) Áramút mágnestér nélkül A méretek megválasztásától függően az ellenállás értéke mágneses tér nélkül néhány ohm-tól néhány kohm-ig terjed. Ha nincs jelen mágneses tér, akkor az áramútja egyenes vonalú. Mágneses tér hatására a töltéshordozók lefelé kényszerülnek Az egyik fémes vezetőszálról a másikra ferde pályán lépnek át. A vezetőszálak rövidzárási hidakat képeznek. A fluxussűrűség növekedésével az áram útja egyre ferdébb lesz, az út hossza pedig egyre nagyobb. Az áram úthosszának növekedése azonban a térlemez ellenállásának növekedését jelenti. A mágneses tér irányának az ellenállás nagyságára nincs hatása. Jellemző adatok: „R0” az alapellenállás mágnestér nélkül, „RB” az ellenállás mágnestér hatására, RB/R0 a relatív ellenállás változás hőmérsékleti tényező 25 °C-on. Áramút kis B értéknél Áramút nagy B értéknél

Automatikai építőelemek 5. Mágneses ellenállásos átalakító Mágnesdiódák Mágnesdióda felépítése A mágnesdiódák olyan diódák, amelyeknek az ellenállását külső mágneses térrel változtatni tudjuk. A mágnesdiódák germániumból és szilíciumból készített félvezető elemek. A kis germániumlap egyik végébe „p” zónát, a másikba pedig „n” zónát visznek be dotálással. A kettő közötti vezetőzóna egyik szélét oly módon szennyezik, hogy ott a töltéshordozóknak erős rekombinációja mehessen végbe. Ez az un. rekombinációs zóna (R zóna) elnyeli a töltéshordozókat Az „R” zónában kerülő töltéshordozók rekombiálódnak, azaz az elektronok és lyukak egyesülve megsemmisítik egymást. Minél több szabad töltéshordozó tűnik el, annál nagyobb lesz a mágnesdióda ellenállása. A „B” mágneses fluxussűrűséggel a rekombináció gyakorisága vezérelhető. A rekombináció gyakoriságának növekedése töltéshordozóritkuláshoz és ezáltal a mágnesdióda ellenállásának növekedéséhez vezet.

Automatikai építőelemek 5. Feszültségfüggő ellenállások(VDR) A VDR (másként még elektromos tér vezérelt) ellenállások (varisztorok) sziliciumkarbidból, vagy cinkoxidból (ZNR-Zinc Oxide Nonlinear Resistor) készített ellenállástárcsák, amelyek jelleggörbéje nemlineáris. Az ellenállásérték növekvő feszültséggel csökken. feszültségfüggő ellenállás karakterisztikája Jellemző adatok: - „C” - az alapellenállás jellemzője, „β” - az áramnövekedés meredekségének mértéke (0,3…0,5), „Pmax” - maximális terhelés.

Automatikai építőelemek 5. Kapacitív jelátalakítók. A kapacitív jelátalakítók feladata az elmozdulás, hosszúság, szögelfordulás átalakítása kapacitássá. Kapacitív érzékelő blokkvázlata ε 0 = 8,85 . 10 -12 [A.s / V.m] ε = ε r . ε 0 ”A” a kondenzátor felülete (m2) „d” a lemezek távolsága (m) A permittivitás annak a mértéke, hogy egy közeg mennyire áll ellen a rá ható elektromos térrel szemben. Más szavakkal, a permittivitás megmutatja milyen mértékben hat egy elektromos tér a közegre, a dielektrikumra. A permittivitást az anyag azon képessége határozza meg, hogy az mennyire képes polarizálódni a tér hatására, és így csökkenteni a teljes elektromos teret az anyagon belül. Úgy is mondhatjuk, hogy a permittivitás megmutatja az anyag képességét az elektromos mező átadására. 4.2 ábra.Néhány kapacitív megoldás. Az SI rendszerben a permittivitás (ε) egysége a (F/m)

Automatikai építőelemek 5. Köszönöm a megtisztelő figyelmet