Hipotézisvizsgálat II.

Slides:



Advertisements
Hasonló előadás
Szimmetriák szerepe a szilárdtestfizikában
Advertisements

Kauzális modellek Randall Munroe.
A TUDOMÁNYOS KUTATÁS MÓDSZERTANA
2.1Jelátalakítás - kódolás
Az úttervezési előírások változásai
Fizika II..
Számítógépes Hálózatok
Profitmaximalizálás  = TR – TC
A járműfenntartás valószínűségi alapjai
Szenzorok Bevezetés és alapfogalmak
Végeselemes modellezés matematikai alapjai
A magas baleseti kockázatú útszakaszok rangsorolása
Szerkezetek Dinamikája
MÉZHAMISÍTÁS.
Hőtan BMegeenatmh 5. Többfázisú rendszerek
BMEGEENATMH Hőátadás.
AUTOMATIKAI ÉPÍTŐELEMEK Széchenyi István Egyetem
Skandináv dizájn Hisnyay – Heinzelmann Luca FG58PY.
VÁLLALATI Pénzügyek 2 – MM
Hőtan BMEGEENATMH 4. Gázkörfolyamatok.
Szerkezetek Dinamikája
Összeállította: Polák József
A TUDOMÁNYOS KUTATÁS MÓDSZERTANA
Csáfordi, Zsolt – Kiss, Károly Miklós – Lengyel, Balázs
Tisztelt Hallgatók! Az alábbi példamegoldások segítségével felkészülhetnek a 15 pontos zárthelyi dolgozatra, ahol azt kell majd bizonyítaniuk, hogy a vállalati.
J. Caesar hatalomra jutása atl. 16d
Anyagforgalom a vizekben
Kováts András MTA TK KI Menedék Egyesület
Az eljárás megindítása; eljárási döntések az eljárás megindítása után
Melanóma Hakkel Tamás PPKE-ITK
Az új közbeszerzési szabályozás – jó és rossz gyakorlatok
Képzőművészet Zene Tánc
Penicillin származékok szabadgyökös reakciói
Boros Sándor, Batta Gyula
Bevezetés az alvás-és álomkutatásba
Kalandozások az álomkutatás területén
TANKERÜLETI (JÁRÁSI) SZAKÉRTŐI BIZOTTSÁG
Nemzetközi tapasztalatok kihűléssel kapcsolatban
Gajdácsi József Főigazgató-helyettes
Követelmények Szorgalmi időszakban:
Brachmann Krisztina Országos Epidemiológiai Központ
A nyelvtechnológia eszközei és nyersanyagai 2016/ félév
Járványügyi teendők meningococcus betegség esetén
Kezdetek októberében a könyvtár TÁMOP (3.2.4/08/01) pályázatának keretében vette kezdetét a Mentori szolgálat.
Poszt transzlációs módosulások
Vitaminok.
A sebész fő ellensége: a vérzés
Pharmanex ® Bone Formula
Data Mining Machine Learning a gyakorlatban - eszközök és technikák
VÁLLALATI PÉNZÜGYEK I. Dr. Tóth Tamás.
Pontos, precíz és hatékony elméleti módszerek az anion-pi kölcsönhatási energiák számítására modell szerkezetekben előadó: Mezei Pál Dániel Ph. D. hallgató.
Bevezetés a pszichológiába
MOSZKVA ZENE: KALINKA –HELMUT LOTTI AUTOMATA.
Bőrimpedancia A bőr fajlagos ellenállásának és kapacitásának meghatározása Impedancia (Z): Ohmos ellenállást, frekvenciafüggő elemeket (kondenzátort, tekercset)
Poimenika SRTA –
Végeselemes modellezés matematikai alapjai
Összefoglalás.
Az energiarendszerek jellemzői, hatékonysága
Varga Júlia MTA KRTK KTI Szirák,
Konzerváló fogászat Dr. Szabó Balázs
Outlier detektálás nagyméretű adathalmazokon
További MapReduce szemelvények: gráfproblémák
Ráhagyások, Mérés, adatgyűjtés
Járműcsarnokok technológiai méretezése
Grafikai művészet Victor Vasarely Maurits Cornelis Escher.
VÁLLALATI PÉNZÜGYEK I. Dr. Tóth Tamás.
RÉSZEKRE BONTOTT SOKASÁG VIZSGÁLATA
Az anyagok fejlesztésével a méretek csökkennek [Feynman, 1959].
Bevezetés a színek elméletébe és a fényképezéssel kapcsolatos fogalmak
Minőségmenedzsment alapjai
Előadás másolata:

Hipotézisvizsgálat II. Dr. Varga Beatrix egy. docens A. Rodin: A gondolkodó

Paraméteres hipotézisvizsgálatok II. Kétmintás próbák

Két sokaság várható értékének különbségére vonatkozó hipotézis-vizsgálat   minta 1 minta 2 minta elemszáma n1 n2 adatok x11, x12, …x1n x21, x22, …x2n minta átlag mintabeli korrigált tapasztalati szórás s1 s2 sokasági szórás σ1 σ2

H0 : μ1 – μ2 = δ véletlen, független minták mindkét sokaság normál eloszlású, a szórások ismertek mintanagyság tetszőleges 𝐳= 𝒙 𝟏− 𝒙 𝟐 −δ 𝝈𝟏 𝒏𝟏 𝟐 + 𝝈𝟐 𝟐 𝒏𝟐 Közelítőleg használható akkor is, ha a változók eloszlása nem normális, de nagy mintánk van.

H0 : μ1 – μ2 = δ EXCEL: Adatok/Adatelemzés

H0 : μ1 – μ2 = δ véletlen, független minták mindkét sokaság normál eloszlású, a szórások nem ismertek az ismeretlen szórások egyezősége feltételezhető kis minta 𝐭= (𝐱𝟏 − 𝐱𝟐 )−𝛅 𝐬𝐩𝟐 𝐧𝟏 + 𝐬𝐩𝟐 𝐧𝟐 szabadságfok: n1+n2-2 Közelítőleg használható akkor is, ha a változók eloszlása nem normális, de nagy mintánk van.

H0 : μ1 – μ2 = δ EXCEL: Adatok/Adatelemzés

H0 : μ1 – μ2 = δ szabadságfok: szfw véletlen, független minták mindkét sokaság normál eloszlású, a szórások nem ismertek az ismeretlen szórások egyezősége nem feltételezhető kis minta 𝒕𝒘= 𝒙 𝟏− 𝒙 𝟐 −δ 𝒔𝟏 𝒏𝟏 𝟐 + 𝒔𝟐 𝟐 𝒏𝟐 𝐬𝐳𝐟𝐰= 𝐬𝟏𝟐 𝐧𝟏 + 𝐬𝟐𝟐 𝐧𝟐 𝟐/ 𝒔𝟏𝟐 𝒏𝟏 𝟐 𝒏𝟏−𝟏 + 𝒔𝟐𝟐 𝒏𝟐 𝟐 𝒏𝟐−𝟏 szabadságfok: szfw Közelítőleg használható akkor is, ha a változók eloszlása nem normális, de nagy mintánk van.

H0 : μ1 – μ2 = δ EXCEL: Adatok/Adatelemzés

t = 𝒅 −𝜹 𝒔𝒅 𝒏 H0 : μ1 – μ2 = δ kis minta véletlen, párosított minták A változók különbsége normális eloszlású, kis minta Ahol: sd a különbségek becsült szórása n a párok száma t = 𝒅 −𝜹 𝒔𝒅 𝒏 szabadságfok: n-1 Nagy minták esetén közelítő érvénnyel használható akkor is, ha a különbség nem normális eloszlású.

H0 : μ1 – μ2 = δ EXCEL: Adatok/Adatelemzés

Két sokasági arány különbségére vonatkozó hipotézisvizsgálat H0 : P1 – P2 = ε minta 1 minta 2 Minta elemszám m n Mintabeli arány Mintabeli szórás ahol q1 = 1 - p1 q2 = 1 - p2 Feltétel: mindkét sokaságból nagy minta

Szórások egyezőségére vonatkozó hipotézisvizsgálat Feltétel: normál alapeloszlású sokaságok H1 valószínűség Alsó kritikus érték (ca) Felső kritikus érték (cf) H1: 1≠2 1-/2 H1: 1<2 1- - H1: 1>2

H0 : 1 = 2 EXCEL: Adatok/Adatelemzés

Critical values of F-test

Tervezik egy új töltőgép beszerzését, mely a műszaki leírás szerint kisebb szórással, pon-tosabban termel. A próbaüzem során azon-ban azt tapasztalták, hogy az új gépen töltött 150 db kávécsomag összes töltőtömege 37,65 kg; Σx2= 9.454.322. A minta alapján elfogadjuk-e a fenti állítást? Milyen szignifikancia-szinten fogadjuk el azt az állítást, hogy az új gépen az átlagos töltősúly legalább 7g-mal több?

Elfogadható-e α=2%-os szignifikancia-szinten, az a feltételezés, hogy az új gépen a 250g-nál kisebb tömegű csomagok aránya legfeljebb 10 százalékponttal kevesebb, ha a megvizsgált 150 kávécsomagból 105-nek volt a tömege az előírt 250 g-nál kevesebb?

x (x) 0,00 0,5000 0,52 0,6985 1,04 0,8508 1,56 0,9406 2,40 0,9918 0,02 0,5080 0,54 0,7054 1,06 0,8554 1,58 0,9429 2,50 0,9938 0,04 0,5160 0,56 0,7123 1,08 0,8599 1,60 0,9452 2,60 0,9953 0,06 0,5239 0,58 0,7190 1,10 0,8643 1,62 0,9474 2,70 0,9965 0,08 0,5319 0,60 0,7257 1,12 0,8686 1,64 0,9495 2,80 0,9974 0,10 0,5398 0,62 0,7324 1,14 0,8729 1,66 0,9515 2,90 0,9981 0,12 0,5478 0,64 0,7389 1,16 0,8770 1,68 0,9535 3,00 0,9987 0,14 0,5557 0,66 0,7454 1,18 0,8810 1,70 0,9554 3,20 0,9993 0,16 0,5636 0,68 0,7517 1,20 0,8849 1,72 0,9572 3,40 0,9996 0,18 0,5714 0,70 0,7580 1,22 0,8888 1,74 0,9591 3,60 0,9998 0,20 0,5793 0,72 0,7642 1,24 0,8925 1,76 0,9608 3,8 0,9999 0,22 0,5871 0,74 0,7703 1,26 0,8962 1,78 0,9625 z-test 0,24 0,5948 0,76 0,7764 1,28 0,8997 1,80 0,9641 0,26 0,6026 0,78 0,7823 1,30 0,9032 1,82 0,9656 0,28 0,6103 0,80 0,7881 1,32 0,9066 1,84 0,9671 0,30 0,6179 0,82 0,7939 1,34 0,9099 1,86 0,9686 0,32 0,6255 0,84 0,7995 1,36 0,9131 1,88 0,9699 0,34 0,6331 0,86 0,8051 1,38 0,9162 1,90 0,9713 0,36 0,6406 0,88 0,8106 1,40 0,9192 1,92 0,9726 0,38 0,6480 0,90 0,8159 1,42 0,9222 1,94 0,9748 0,40 0,6554 0,92 0,8212 1,44 0,9251 1,96 0,9750 0,42 0,6628 0,94 0,8264 1,46 0,9279 1,98 0,9761 0,44 0,6700 0,96 0,8315 1,48 0,9306 2,00 0,9772 0,46 0,6772 0,98 0,8365 1,50 0,9332 2,10 0,9821 0,48 0,6844 1,00 0,8413 1,52 0,9357 2,20 0,9861 0,50 0,6915 1,02 0,8461 1,54 0,9382 2,30 0,9893

Student’s t-test Df 0,55 0,60 0,70 0,75 0,80 0,90 0,95 0,975 0,99 0,995 1 0,158 0,325 0,727 1,000 1,376 3,08 6,31 12,71 31,82 63,66 2 0,142 0,289 0,617 0,816 1,061 1,89 2,92 4,30 6,96 9,92 3 0,137 0,277 0,584 0,765 0,978 1,64 2,35 3,18 4,54 5,84 4 0,134 0,271 0,569 0,741 0,941 1,53 2,13 2,78 3,75 4,60 5 0,132 0,267 0,559 0,920 1,48 2,02 2,57 3,36 4,03 6 0,131 0,265 0,553 0,718 0,906 1,44 1,94 2,45 3,14 3,71 7 0,130 0,263 0,549 0,711 0,896 1,42 1,90 2,36 3,00 3,50 8 0,262 0,546 0,706 0,889 1,40 1,86 2,31 2,90 9 0,129 0,261 0,543 0,703 0,883 1,38 1,83 2,26 2,82 3,25 10 0,260 0,542 0,700 0,879 1,37 1,81 2,23 2,76 3,17 11 0,540 0,697 0,876 1,36 1,80 2,20 2,72 3,11 12 0,128 0,259 0,539 0,695 0,873 1,78 2,18 2,68 3,06 13 0,538 0,694 0,870 1,35 1,77 2,16 2,65 3,01 14 0,258 0,537 0,692 0,868 1,34 1,76 2,14 2,62 2,98 15 0,536 0,691 0,866 1,75 2,60 2,95 16 0,535 0,690 0,865 2,12 2,58 17 0,257 0,534 0,689 0,863 1,33 1,74 2,11 18 0,127 0,688 0,862 1,73 2,10 2,55 2,88 19 0,533 0,861 2,09 2,54 2,86 20 0,687 0,860 1,32 1,72 2,53 2,84 21 0,532 0,686 0,859 2,08 2,52 2,83 22 0,256 0,858 2,07 2,51 23 0,685 1,71 2,50 2,81 24 0,531 0,857 2,06 2,49 2,80 25 0,684 0,856 2,48 2,79 26 27 0,855 1,31 1,70 2,05 2,47 2,77 28 0,530 0,683 29 0,854 2,04 2,46 30 2,75 40 0,126 0,255 0,529 0,681 0,851 1,30 1,68 2,42 2,70 60 0,254 0,527 0,679 0,848 1,67 2,00 2,39 2,66 120 0,526 0,677 0,845 1,29 1,66 1,98  0,253 0,524 0,674 0,842 1,28 1,645 1,96 2,33

χ2 Df 0,005 0,01 0,025 0,05 0,10 0,25 0,50 0,75 0,90 0,95 0,975 0,99 0,995 1 0,0000 0,0002 0,0010 0,039 0,0158 0,102 0,455 1,32 2,71 3,84 5,02 6,63 7,88 2 0,0100 0,0201 0,0506 0,103 0,211 0,575 1,39 2,77 4,61 5,99 7,38 9,21 10,6 3 0,072 0,115 0,216 0,352 0,584 1,21 2,37 4,11 6,25 7,81 9,35 11,3 12,8 4 0,207 0,297 0,484 0,711 1,06 1,92 3,36 5,39 7,78 9,49 11,1 13,3 14,9 5 0,412 0,554 0,831 1,15 1,61 2,67 4,35 9,24 15,1 16,7 6 0,676 0,872 1,24 1,64 2,20 3,45 5,35 7,84 12,6 14,4 16,8 18,5 7 0,989 1,69 2,17 2,83 4,25 6,35 9,04 12,0 14,1 16,0 20,3 8 1,34 1,65 2,18 2,73 3,49 5,07 7,34 10,2 13,4 15,5 17,5 20,1 22,0 9 1,73 2,09 2,70 3,33 4,17 5,90 8,34 11,4 14,7 16,9 19,0 21,7 23,6 10 2,16 2,56 3,25 3,94 4,87 6,74 9,34 12,5 18,3 20,5 23,2 25,2 11 2,60 3,05 3,82 4,57 5,58 7,58 10,3 13,7 17,3 19,7 21,9 24,7 26,8 12 3,07 3,57 4,40 5,23 6,30 8,44 14,8 21,0 23,3 26,2 28,3 13 5,01 5,89 7,04 9,30 12,3 19,8 22,4 27,7 29,8 14 4,07 4,66 5,63 6,57 7,79 17,1 21,1 23,7 26,1 29,1 31,3 15 4,60 6,26 7,26 8,55 11,0 14,3 18,2 22,3 25,0 27,5 30,6 32,8 16 5,14 5,81 6,91 7,96 9,31 11,9 15,3 19,4 23,5 26,3 28,8 32,0 34,3 17 5,70 6,41 7,56 8,67 10,1 16,3 24,8 27,6 30,2 33,4 35,7 18 7,01 8,23 9,39 10,9 21,6 26,0 28,9 31,5 34,8 37,2 19 6,84 7,63 8,91 11,7 14,6 22,7 27,2 30,1 32,9 36,2 38,6 20 7,43 8,26 9,59 12,4 19,3 23,8 28,4 31,4 34,2 37,6 40,0 21 8,03 8,90 11,6 13,2 24,9 29,6 32,7 35,5 38,9 41,4 22 8,64 9,54 14,0 17,2 21,3 30,8 33,9 36,8 40,3 42,8 23 9,26 13,1 18,1 27,1 35,2 38,1 41,6 44,2 24 9,89 13,8 15,7 28,2 33,2 36,4 39,4 43,0 45,6 25 10,5 11,5 16,5 19,9 24,3 29,3 34,4 37,7 40,6 44,3 46,9 26 11,2 12,2 15,4 20,8 25,3 30,4 35,6 41,9 48,3 27 11,8 12,9 16,2 36,7 40,1 43,2 47,0 49,6 28 13,6 18,9 27,3 32,6 37,9 41,3 44,5 51,0 29 17,7 33,7 39,1 42,6 45,7 52,3 30 15,0 20,6 24,5 43,8 50,9 53,7 40 20,7 22,2 24,4 26,5 39,3 51,8 55,8 59,3 63,7 66,8 50 28,0 29,7 32,4 42,9 49,3 56,3 63,2 67,5 71,4 76,2 79,5 60 37,5 40,5 46,5 67,0 74,4 79,1 83,3 88,4 92,0 70 43,3 45,4 48,8 51,7 55,3 61,7 69,3 77,6 85,5 90,5 95,0 100,4 104,2 80 51,2 53,5 57,2 60,4 64,3 71,1 79,3 88,1 96,6 101,9 106,6 112,3 116,3 90 59,2 61,8 65,6 69,1 73,3 80,6 89,3 98,6 107,6 113,1 118,1 124,1 128,3 100 67,3 70,1 74,2 77,9 82,4 90,1 99,3 109,1 118,5 124,3 129,6 135,8 140,2

Köszönöm a figyelmet!