Hőközlés – Alapfogalmak Hővezetés és hősugárzás

Slides:



Advertisements
Hasonló előadás
Szimmetriák szerepe a szilárdtestfizikában
Advertisements

Kauzális modellek Randall Munroe.
A TUDOMÁNYOS KUTATÁS MÓDSZERTANA
2.1Jelátalakítás - kódolás
Az úttervezési előírások változásai
Fizika II..
Számítógépes Hálózatok
Profitmaximalizálás  = TR – TC
A járműfenntartás valószínűségi alapjai
Szenzorok Bevezetés és alapfogalmak
Végeselemes modellezés matematikai alapjai
A magas baleseti kockázatú útszakaszok rangsorolása
Szerkezetek Dinamikája
MÉZHAMISÍTÁS.
Hőtan BMegeenatmh 5. Többfázisú rendszerek
BMEGEENATMH Hőátadás.
AUTOMATIKAI ÉPÍTŐELEMEK Széchenyi István Egyetem
Skandináv dizájn Hisnyay – Heinzelmann Luca FG58PY.
VÁLLALATI Pénzügyek 2 – MM
Hőtan BMEGEENATMH 4. Gázkörfolyamatok.
Szerkezetek Dinamikája
Összeállította: Polák József
A TUDOMÁNYOS KUTATÁS MÓDSZERTANA
Csáfordi, Zsolt – Kiss, Károly Miklós – Lengyel, Balázs
Tisztelt Hallgatók! Az alábbi példamegoldások segítségével felkészülhetnek a 15 pontos zárthelyi dolgozatra, ahol azt kell majd bizonyítaniuk, hogy a vállalati.
J. Caesar hatalomra jutása atl. 16d
Anyagforgalom a vizekben
Kováts András MTA TK KI Menedék Egyesület
Az eljárás megindítása; eljárási döntések az eljárás megindítása után
Melanóma Hakkel Tamás PPKE-ITK
Az új közbeszerzési szabályozás – jó és rossz gyakorlatok
Képzőművészet Zene Tánc
Penicillin származékok szabadgyökös reakciói
Boros Sándor, Batta Gyula
Bevezetés az alvás-és álomkutatásba
Kalandozások az álomkutatás területén
TANKERÜLETI (JÁRÁSI) SZAKÉRTŐI BIZOTTSÁG
Nemzetközi tapasztalatok kihűléssel kapcsolatban
Gajdácsi József Főigazgató-helyettes
Követelmények Szorgalmi időszakban:
Brachmann Krisztina Országos Epidemiológiai Központ
A nyelvtechnológia eszközei és nyersanyagai 2016/ félév
Járványügyi teendők meningococcus betegség esetén
Kezdetek októberében a könyvtár TÁMOP (3.2.4/08/01) pályázatának keretében vette kezdetét a Mentori szolgálat.
Poszt transzlációs módosulások
Vitaminok.
A sebész fő ellensége: a vérzés
Pharmanex ® Bone Formula
Data Mining Machine Learning a gyakorlatban - eszközök és technikák
VÁLLALATI PÉNZÜGYEK I. Dr. Tóth Tamás.
Pontos, precíz és hatékony elméleti módszerek az anion-pi kölcsönhatási energiák számítására modell szerkezetekben előadó: Mezei Pál Dániel Ph. D. hallgató.
Bevezetés a pszichológiába
MOSZKVA ZENE: KALINKA –HELMUT LOTTI AUTOMATA.
Bőrimpedancia A bőr fajlagos ellenállásának és kapacitásának meghatározása Impedancia (Z): Ohmos ellenállást, frekvenciafüggő elemeket (kondenzátort, tekercset)
Poimenika SRTA –
Végeselemes modellezés matematikai alapjai
Összefoglalás.
Az energiarendszerek jellemzői, hatékonysága
Varga Júlia MTA KRTK KTI Szirák,
Konzerváló fogászat Dr. Szabó Balázs
Outlier detektálás nagyméretű adathalmazokon
További MapReduce szemelvények: gráfproblémák
Ráhagyások, Mérés, adatgyűjtés
Járműcsarnokok technológiai méretezése
Grafikai művészet Victor Vasarely Maurits Cornelis Escher.
VÁLLALATI PÉNZÜGYEK I. Dr. Tóth Tamás.
RÉSZEKRE BONTOTT SOKASÁG VIZSGÁLATA
Az anyagok fejlesztésével a méretek csökkennek [Feynman, 1959].
Bevezetés a színek elméletébe és a fényképezéssel kapcsolatos fogalmak
Minőségmenedzsment alapjai
Előadás másolata:

Hőközlés – Alapfogalmak Hővezetés és hősugárzás Hőtan Hőközlés – Alapfogalmak Hővezetés és hősugárzás

Időben állandósult hővezetés. Bordák és rudak hővezetése

Hőellenállás Analóg a villamos ellenállással: 𝑒𝑙𝑙𝑒𝑛á𝑙𝑙á𝑠= ℎ𝑎𝑗𝑡ó𝑒𝑟ő á𝑟𝑎𝑚 𝑅 𝐻 = ∆𝑇 𝑄 Analóg a villamos ellenállással: Meghatározása különböző hőterjedési módokra (jelölések köv. dia): - hővezetés Furier-egyenlet: 𝑄 =−𝜆⋅𝐴⋅𝑔𝑟𝑎𝑑 𝑡 megoldva t(x)-re - síkfalra: 𝑡 2 − 𝑡 1 = 𝑄 ⋅ 𝛿 𝜆⋅𝐴 rendezve ∆𝑇 𝑄 = 𝛿 𝜆⋅𝐴 = 𝑅 𝑉,𝑠 - csőfalra: 𝑡 2 − 𝑡 1 = 𝑄 ⋅ 𝑙𝑛 𝑟 2 𝑟 1 2𝜋𝜆𝐿 rendezve ∆𝑇 𝑄 = 𝑙𝑛 𝑟 2 𝑟 1 2𝜋𝜆𝐿 = 𝑅 𝑉,𝑐𝑠 - gömbhéjra: 𝑡 2 − 𝑡 1 = 𝑄 ⋅ 1 𝑟 1 − 1 𝑟 2 4𝜋𝜆 rendezve ∆𝑇 𝑄 = 1 𝑟 1 − 1 𝑟 2 4𝜋𝜆 = 𝑅 𝑉,𝑔 - hőátadás: Newton egyenlet: 𝑄 =𝛼⋅𝐴⋅ 𝑡 𝑤 − 𝑡 ∞ rendezve ∆𝑇 𝑄 = 1 𝛼⋅𝐴 = 𝑅 𝐾

Vezetéses hőellenállás t(r) t(x) t(r)

Hőellenállás-hálózat Összetett hővezetéses rendszerek leképezése 𝑅 𝑡𝑜𝑡,𝑠𝑜𝑟𝑜𝑠 = 𝑖 𝑅 𝑖 𝑅 𝑡𝑜𝑡,𝑝á𝑟ℎ = 1 𝑖 1 𝑅 𝑖

Kontakt hőellenállás Nem tökéletesen érintkező felületek 𝑅 𝑘𝑜𝑛𝑡𝑎𝑘𝑡 = 𝑇 𝐴 − 𝑇 𝐵 𝑄 𝑘𝑜𝑛𝑡𝑎𝑘𝑡 = 𝛿 𝑟é𝑠 𝜆 𝑟é𝑠 ⋅𝐴

Hőellenállás összetett folyamatra (hőátadás – hővezetés - hőátadás) 𝑄 𝑥

Hőellenállás-hálózat (henger) Hengeres geometria leképezése hőellenállásokkal

Hőellenállás-hálózat (gömb) Gömbhéj geometria leképezése hőellenállásokkal Meleg közeg 𝑇 ∞,1 Hideg közeg 𝛼 1 𝑇 ∞,2 𝝀 𝛼 2 𝑇 ∞,1 𝑇 1 𝑇 2 𝑇 ∞,2 𝑟 2,𝑘𝑟𝑖𝑡 𝑎ℎ𝑜𝑙 𝑑 𝑅 𝑡𝑜𝑡 𝑑 𝑟 2 =0 1 𝑟 1 − 1 𝑟 2 4𝜋𝜆 1 4 𝑟 1 2 𝜋𝜆 1 4 𝑟 2 2 𝜋𝜆 Rtot= + +

Bordák és rudak hővezetése A borda alkalmazásának előnyei bordázatlan felület bordázott felület

A természet példái Stegosaurus

A természet példái Bordás krokodil

A természet példái Elefánt

Háztartási példa Füles csésze és kiskanál Lemezbordás radiátor

Műszaki gyakorlat apróbordás autóhűtő (hőcserélő) hőcsöves hagyományos

Bordák és rudak hővezetése Borda kialakítások és alkalmazások

Bordák és rudak hővezetése Borda alaptípusok

Bordák és rudak hővezetése A borda hőfokeloszlásának differenciálegyenlete

A borda hőfokeloszlásának differenciálegyenlete 𝑄′ 𝑄′′ 𝐴 𝐴 𝑝 𝑑 𝑄 𝑈 𝑑𝑥 𝐻 ∆𝑡 𝑥 ∆𝑡 ∆𝑡 𝑥=𝐻 𝑥 𝑑(∆𝑡) ∆𝑡 0 𝑄 𝑡𝑜𝑡 𝑄 0 𝑑 𝑄 𝑄 ′ =−𝜆⋅𝐴⋅ 𝑑 ∆𝑡 𝑑𝑥 ahol Δt a borda túlhőmérséklete hőm. megváltozása a dx szakaszon: ∆𝑡+ 𝑑(∆𝑡) 𝑑𝑥 ∙𝑑𝑥 ezzel a távozó hőáram: 𝑄 ′′ =−𝜆⋅𝐴⋅ 𝑑 𝑑𝑥 ∆𝑡+ 𝑑 ∆𝑡 𝑑𝑥 ∙𝑑𝑥 =−𝜆⋅𝐴⋅ 𝑑 ∆𝑡 𝑑𝑥 −𝜆⋅𝐴⋅ 𝑑 2 ∆𝑡 𝑑 𝑥 2 ∙𝑑𝑥 Paláston leadott hőáram: 𝑑 𝑄 = 𝑄 ′ − 𝑄 ′′

A borda hőfokeloszlásának differenciálegyenlete Paláston leadott hőáram: 𝑑 𝑄 = 𝑄 ′ − 𝑄 ′′ =−𝜆⋅𝐴⋅ 𝑑 ∆𝑡 𝑑𝑥 +𝜆⋅𝐴⋅ 𝑑 ∆𝑡 𝑑𝑥 +𝜆⋅𝐴⋅ 𝑑 2 ∆𝑡 𝑑 𝑥 2 ∙𝑑𝑥 vagy 𝑑 𝑄 =𝛼∙ 𝐴 𝑝 ∙∆𝑡= 𝛼∙𝑈⋅𝑑𝑥∙∆𝑡 ahol 𝐴 𝑝 =𝑈⋅𝑑𝑥 𝛼∙𝑈⋅𝑑𝑥∙∆𝑡=𝜆⋅𝐴⋅ 𝑑 2 ∆𝑡 𝑑 𝑥 2 ∙𝑑𝑥 rendezve: 𝑚= 𝛼∙𝑈 𝜆⋅𝐴 𝛼∙𝑈 𝜆⋅𝐴 ⋅∆𝑡= 𝑑 2 ∆𝑡 𝑑 𝑥 2 bevezetve: 𝑚 2 ⋅∆𝑡= 𝑑 2 ∆𝑡 𝑑 𝑥 2 ∆𝑡= 𝐶 1 ∙𝑒 𝑚𝑥 +𝐶 2 ∙ 𝑒 −𝑚𝑥 Általános megoldás:

Bordák és rudak hővezetése A borda hőfokeloszlásának peremfeltételei

Az állandó keresztmetszetű rúd- és lemezbordák hőfokeloszlása és hőárama (segédlet)

Bordák és rudak hővezetése Jelleggzetes bordakialakítások

Időben változó hővezetés

Időben változó hővezetés Hővezetés általános differenciálegyenlete

Időben változó hővezetés A hővezetés általános differenciálegyenlete Entalpiaváltozás: Hőáram különbözetek: 𝑑𝐻 𝑑𝜏 = 𝑐 𝑝 ∙𝑚∙𝜕𝑡= 𝑐 𝑝 ∙𝜌∙𝑑𝑉∙𝜕𝑡= 𝑐 𝑝 ∙𝜌∙𝑑𝑥∙𝑑𝑥∙𝑑𝑧∙𝜕𝑡

Időben változó hővezetés Az energiamérleg differenciális formában: A hővezetés általános differenciálegyenletének koordináta rdsz-től független alakja: 𝑑𝑥𝑑𝑦𝑑𝑧=𝑑𝑉 és egyike sem zérus, továbbá ha 𝜆 független a hőmérséklettől: 𝑞 𝑉 +𝜆 𝜕 2 𝑡 𝜕𝑥 2 + 𝜕 2 𝑡 𝜕𝑦 2 + 𝜕 2 𝑡 𝜕𝑧 2 =𝜌𝑐 𝜕𝑡 𝜕𝜏 továbbá bevezetve: 𝑎= 𝜆 𝜌𝑐 𝑞 𝑉 𝜌𝑐 +𝑎 𝜕 2 𝑡 𝜕𝑥 2 + 𝜕 2 𝑡 𝜕𝑦 2 + 𝜕 2 𝑡 𝜕𝑧 2 = 𝜕𝑡 𝜕𝜏

Időben változó hővezetés Peremfeltételek Dirichlet-féle Neumann-féle konvektív

Időben változó hővezetés További peremfeltételek adiabatikus (szigetelt) felszín konvekció és sugárzás együttese hősugárzás érintkező szilárd felületek …

Időben változó hővezetés Hőmérsékleteloszlás különböző peremfeltételek mellett koncentrált paraméterű kezelés (Bi<0,1)

Időben változó hővezetés Hasonlóság feltételei: a leíró differenciálegyenletek dimenziótlan alakja azonos geometriai körülmények hasonlóak, egyszerű geometriai transzformációval azonossá tehetők a geometriák kezdeti feltételek dimenziótlan alakja azonos peremfeltételek dimenziótlan alakja azonos

Időben változó hővezetés Dimenziótlanítás dimenziótlanítás Hasonlóságot biztosító mennyiségek

Időben változó hővezetés Megoldás szorzat szeparációs módszerrel Figyeljük a táblát!

Időben változó hővezetés Sík fal lehűlése – harmadfajú peremfelt.

Időben változó hővezetés Dimenziótlan megoldás  Heisler diagram (sík fal, közép) Első közzététel: M. P. Heisler, Transactions ASME, 69, 227-236, 1947

Időben változó hővezetés Kiegészítő diagramok hely szerinti korrekció leadott, ill. felvett hő

Véges kiterjedésű testek Téglatest Henger