A vállalati döntések modellezése

Slides:



Advertisements
Hasonló előadás
Szimmetriák szerepe a szilárdtestfizikában
Advertisements

Kauzális modellek Randall Munroe.
A TUDOMÁNYOS KUTATÁS MÓDSZERTANA
2.1Jelátalakítás - kódolás
Az úttervezési előírások változásai
Fizika II..
Számítógépes Hálózatok
Profitmaximalizálás  = TR – TC
A járműfenntartás valószínűségi alapjai
Szenzorok Bevezetés és alapfogalmak
Végeselemes modellezés matematikai alapjai
A magas baleseti kockázatú útszakaszok rangsorolása
Szerkezetek Dinamikája
MÉZHAMISÍTÁS.
Hőtan BMegeenatmh 5. Többfázisú rendszerek
BMEGEENATMH Hőátadás.
AUTOMATIKAI ÉPÍTŐELEMEK Széchenyi István Egyetem
Skandináv dizájn Hisnyay – Heinzelmann Luca FG58PY.
VÁLLALATI Pénzügyek 2 – MM
Hőtan BMEGEENATMH 4. Gázkörfolyamatok.
Szerkezetek Dinamikája
Összeállította: Polák József
A TUDOMÁNYOS KUTATÁS MÓDSZERTANA
Csáfordi, Zsolt – Kiss, Károly Miklós – Lengyel, Balázs
Tisztelt Hallgatók! Az alábbi példamegoldások segítségével felkészülhetnek a 15 pontos zárthelyi dolgozatra, ahol azt kell majd bizonyítaniuk, hogy a vállalati.
J. Caesar hatalomra jutása atl. 16d
Anyagforgalom a vizekben
Kováts András MTA TK KI Menedék Egyesület
Az eljárás megindítása; eljárási döntések az eljárás megindítása után
Melanóma Hakkel Tamás PPKE-ITK
Az új közbeszerzési szabályozás – jó és rossz gyakorlatok
Képzőművészet Zene Tánc
Penicillin származékok szabadgyökös reakciói
Boros Sándor, Batta Gyula
Bevezetés az alvás-és álomkutatásba
Kalandozások az álomkutatás területén
TANKERÜLETI (JÁRÁSI) SZAKÉRTŐI BIZOTTSÁG
Nemzetközi tapasztalatok kihűléssel kapcsolatban
Gajdácsi József Főigazgató-helyettes
Követelmények Szorgalmi időszakban:
Brachmann Krisztina Országos Epidemiológiai Központ
A nyelvtechnológia eszközei és nyersanyagai 2016/ félév
Járványügyi teendők meningococcus betegség esetén
Kezdetek októberében a könyvtár TÁMOP (3.2.4/08/01) pályázatának keretében vette kezdetét a Mentori szolgálat.
Poszt transzlációs módosulások
Vitaminok.
A sebész fő ellensége: a vérzés
Pharmanex ® Bone Formula
Data Mining Machine Learning a gyakorlatban - eszközök és technikák
VÁLLALATI PÉNZÜGYEK I. Dr. Tóth Tamás.
Pontos, precíz és hatékony elméleti módszerek az anion-pi kölcsönhatási energiák számítására modell szerkezetekben előadó: Mezei Pál Dániel Ph. D. hallgató.
Bevezetés a pszichológiába
MOSZKVA ZENE: KALINKA –HELMUT LOTTI AUTOMATA.
Bőrimpedancia A bőr fajlagos ellenállásának és kapacitásának meghatározása Impedancia (Z): Ohmos ellenállást, frekvenciafüggő elemeket (kondenzátort, tekercset)
Poimenika SRTA –
Végeselemes modellezés matematikai alapjai
Összefoglalás.
Az energiarendszerek jellemzői, hatékonysága
Varga Júlia MTA KRTK KTI Szirák,
Konzerváló fogászat Dr. Szabó Balázs
Outlier detektálás nagyméretű adathalmazokon
További MapReduce szemelvények: gráfproblémák
Ráhagyások, Mérés, adatgyűjtés
Járműcsarnokok technológiai méretezése
Grafikai művészet Victor Vasarely Maurits Cornelis Escher.
VÁLLALATI PÉNZÜGYEK I. Dr. Tóth Tamás.
RÉSZEKRE BONTOTT SOKASÁG VIZSGÁLATA
Az anyagok fejlesztésével a méretek csökkennek [Feynman, 1959].
Bevezetés a színek elméletébe és a fényképezéssel kapcsolatos fogalmak
Minőségmenedzsment alapjai
Előadás másolata:

A vállalati döntések modellezése Profitmaximalizálás

Profit függvény általánosan ∏=TR-TC TR=QP – a piaci forma határozza meg TC – a technológia és a termelési tényezők ára határozza meg A technológiát a termelési függvény mutatja

Termelési tényezők Munka (Labour) Tőke (Capital – K) + Természeti tényezők (lAnd) Vállalkozói szolgáltatás (Enterpreneur)

A termelési függvény Két input esetén: Q=f(L,K) Q B QB termelési pontok A K QA L KB KA LB LA

A termelési függvény Adott technológia mellett mutatja az output függését az inputoktól Természetes mértékegységben „Hosszú táv”

Gazdasági időtávok Nagyon rövid táv (piaci) Rövid táv ( egyes tényezők változatlanok, mások változnak) Hosszú táv ( minden tényező változik) Nagyon hosszú táv (a technológia is változik → új termelési függvény)

Parciális (rövidtávú) termelési függvény = adott üzemméret (kapacitás) Q y=F(L,K0), K rögzített K0 értéken = adott üzemnagyság L′ L′′ L Ha 0 ≤ L ≤ L ′ , akkor a munkaráfordítás növelésével a termelés növekvő ütembe nő, ha L′ ≤ L ≤ L′′ csökkenő ütemben nő; Ha L′′ < L , akkor már csökken. A termelési függvény meredeksége: határtermék

Határtermék, határtermelékenység Jele MPL az az összterméknövekmény, amely egy újabb munkaegység bevonásával keletkezik, a termelési függvény meredeksége Matematikailag meghatározható a termelési függvény munka szerinti első deriváltjával, azaz: 𝑀𝑃 𝐿 = ∂Q ∂𝐿 = ∂𝐹 ∂𝐿 Valójában a hozadéki szférákat határolja el (Arányváltozási hozadék)

A termelés átlag- és határterméke (termelékenysége) Egy termelési tényező (munka) határterméke (MPL=dQ/dL) Egy termelési tényező (munka) átlagterméke (APL= Q/L) Tényező parciális termelési rugalmassága (εL=MPL/APL) εL= 𝒅𝑸 𝑸 𝒅𝑳 𝑳 = 𝒅𝑸 𝒅𝑳 𝑸 𝑳

Q Parciális termelési függvény, Határ- és Átlagtermék (MPL, APL) függvények összefüggései M E Q(L,K0) E=Változó tényező hozadéki optimuma M=fix tényező hozadéki optimuma I i e m L MPL,APL MPL APL εL=1 L növekvő hozadék negatív hozadék csökkenő hozadék

Bizonyítás 𝑌=𝑓 𝑥 , 𝑓(𝑥) 𝑥 szélsőértéke 𝑓(𝑥) 𝑋 ′ =0, 𝑓 ′ 𝑋 𝑥−𝑓(𝑥) 𝑥 2 =0 𝑓 ′ (x)x=f(x), 𝑓(𝑥) 𝑥 = 𝑓 ′ (x)

Újra hosszú táv A termelési tényezők együttes (arányos) változása hogyan hat a termelésre Skálahozadék, mérethozadék, volumenhozadék Az üzemméret megválasztása!

Homogén termelési függvények Ha a tényezők α-ra nőnek Q hogyan változik f(αK,αL) és Qαr r>1, növekvő hozadék, pl.: Q=L2*K r=1, állandó hozadék, pl.: Q=(L*K)1/2 r<1, csökkenő hozadék, pl.: Q=(L*K)1/4

Az isoquantok levezetés a termelési

Újra hosszú táv Isoquantok (azonos termék görbék)

q0, q1 és q2 az egyes vizsgált termelési szinteket jelöli Az origótól távolabb lévő isoquantok nagyobb termelési szintet jelentenek. a K, L koordinátarendszerbe végtelenül sok isoquant rajzolható be. Az isoquantok nem metszhetik egymást. Az isoquantok negatív meredekségű és visszahajló szakaszokat is tartalmazhatnak.

A gerincvonal Az isoquantok visszahajló szakaszait a negatív meredekségű szakaszoktól elválasztó határvonal a gerincvonal. A gerincvonalakon kívül valamelyik termelési tényező felhasználása túlzott. A releváns tartományban konvex isoquntok („jól viselkedő isoquantok”.

Technikai helyettesítési határráta MPK.dK+MPL.dL=0 K B C L L Diszkrét pontok: (technikai helyettesítési ráta – RTS) Folytonos elmozdulás: (technikai helyettesítési határráta – MRTS)

Mitől függ a helyettesítés? MPK*dK+MPL*dL=0 MRTS=

Speciális isoquantok Tökéletes helyettesítés (MRTS=állandó) Tökéletes kiegészítés(Leontief termelési fg.) K isoquantok L

Leontief termelési függvény 𝑄=𝑀𝐼𝑁(𝑎𝐾,𝑏𝐿) Q=aK Q=bL 𝐾 𝐿 = 𝑏 𝑎 = konstans

A törtvonalú isoquant Technológiák helyettesíthetősége (A-B és B-C) skálaegyenesek: adott tényezőarány– adott technológia E1 K E2 A B E3 C L Technológiák helyettesíthetősége (A-B és B-C)

Költségkorlát, isocost egyenes Tényezőárak Összköltség K= 𝑻𝑪 𝑷 𝑳 −𝑳 𝑷 𝑳 𝑷 𝑲 K TC/pK TC=pLL+pKK L TC/pL

„Optimális” választás a termelésben K Minimális költség– adott output, ill. maximális termelés adott költség A Q0 e L Optimalizáció kritériuma: MPL/MPK=pL/pK

Költségminimalizálás : Adott költség mellett keressük a maximális termelési szintet Ez az isocost egyenes és a legmagasabb termelési szintet jelentő isoquant közös pontja Optimum: MPL/MPK=pL/pK

Termelés maximalizálás: Adott termelési szinthez keressük a minimális költséget Ez az adott isoquant és az isoquanthoz húzott, legkisebb összköltségű eljárást jelentő isocost egyenes közös pontja Optimum: MPL/MPK=pL/pK

. 4. példa: Egy vállalat két inputot, munkát és tőkét használ fel. A munka ára 400, a tőke ára 1000. A vállalatnál az utolsóként felhasznált inputegységek határtermékei: Véleménye szerint optimálisnak tekinthető-e a vállalat által alkalmazott tényezőkombináció? Válaszát indokolja meg! Amennyiben nem optimális, akkor hogyan lenne célszerű változtatni a tőke és munka mennyiségét?

Az optimum feltétele, hogy a tényezőár-aránynak meg kell egyeznie a határtermékek hányadosával. Ez itt nem teljesül.

Gossen II: a termelésben   𝑀 𝑃 𝐿 𝑃 𝐿 = 𝑀 𝑃 𝐾 𝑃 𝐾 illetve: 𝑃 𝐿 𝑀𝑃 𝐿 = 𝑃 𝐾 𝑀𝑃 𝐾 = (MC)